BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 20353301)

  • 21. Mucoid Pseudomonas in cystic fibrosis.
    Pritt B; O'Brien L; Winn W
    Am J Clin Pathol; 2007 Jul; 128(1):32-4. PubMed ID: 17580270
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of estrogen on pseudomonas mucoidy and exacerbations in cystic fibrosis.
    Chotirmall SH; Smith SG; Gunaratnam C; Cosgrove S; Dimitrov BD; O'Neill SJ; Harvey BJ; Greene CM; McElvaney NG
    N Engl J Med; 2012 May; 366(21):1978-86. PubMed ID: 22607135
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pseudomonas aeruginosa chronic colonization in cystic fibrosis patients.
    Murray TS; Egan M; Kazmierczak BI
    Curr Opin Pediatr; 2007 Feb; 19(1):83-8. PubMed ID: 17224667
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phenotypes selected during chronic lung infection in cystic fibrosis patients: implications for the treatment of Pseudomonas aeruginosa biofilm infections.
    Ciofu O; Mandsberg LF; Wang H; Høiby N
    FEMS Immunol Med Microbiol; 2012 Jul; 65(2):215-25. PubMed ID: 22540844
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Epidemiological investigation and glycotyping of clinical Pseudomonas aeruginosa isolates from patients with cystic fibrosis by mass spectrometry: association with multiple drug resistance.
    Altman E; Wang Z; Aaron SD; Liu X; Vandemheen KL; Ferris W; Giesbrecht T; Li J
    J Microbiol Methods; 2009 Feb; 76(2):204-8. PubMed ID: 19000720
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Serotyping and virulence factors of Pseudomonas aeruginosa clinical isolates.
    Hostacká A; Majtán V
    Acta Microbiol Immunol Hung; 1997; 44(2):141-6. PubMed ID: 9330662
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pseudomonas aeruginosa Aggregate Formation in an Alginate Bead Model System Exhibits
    Sønderholm M; Kragh KN; Koren K; Jakobsen TH; Darch SE; Alhede M; Jensen PØ; Whiteley M; Kühl M; Bjarnsholt T
    Appl Environ Microbiol; 2017 May; 83(9):. PubMed ID: 28258141
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Subinhibitory concentrations of antibacterial drugs and Pseudomonas aeruginosa virulence factors.
    Trancassini M; Giordano A; Magni A; Cipriani P
    New Microbiol; 1993 Jul; 16(3):275-9. PubMed ID: 8366823
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pathogenesis and clinical manifestations of chronic colonization by Pseudomonas aeruginosa and its biofilms in the airway tract.
    Kobayashi H; Kobayashi O; Kawai S
    J Infect Chemother; 2009 Jun; 15(3):125-42. PubMed ID: 19554398
    [No Abstract]   [Full Text] [Related]  

  • 30. Alginate production by Pseudomonas putida creates a hydrated microenvironment and contributes to biofilm architecture and stress tolerance under water-limiting conditions.
    Chang WS; van de Mortel M; Nielsen L; Nino de Guzman G; Li X; Halverson LJ
    J Bacteriol; 2007 Nov; 189(22):8290-9. PubMed ID: 17601783
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interference of Pseudomonas aeruginosa signalling and biofilm formation for infection control.
    Bjarnsholt T; Tolker-Nielsen T; Høiby N; Givskov M
    Expert Rev Mol Med; 2010 Apr; 12():e11. PubMed ID: 20370936
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pseudomonas aeruginosa: new insights into pathogenesis and host defenses.
    Gellatly SL; Hancock RE
    Pathog Dis; 2013 Apr; 67(3):159-73. PubMed ID: 23620179
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nitrosative stress inhibits production of the virulence factor alginate in mucoid Pseudomonas aeruginosa.
    Wood SR; Firoved AM; Ornatowski W; Mai T; Deretic V; Timmins GS
    Free Radic Res; 2007 Feb; 41(2):208-15. PubMed ID: 17364947
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Discrepancy in the disk diffusion susceptibility test of Pseudomonas aeruginosa strains isolated from cystic fibrosis patients after anaerobic preincubation and its potential clinical relevance].
    Cafini F; García-Rey C; Bas P; Gómez-Lus ML; Sánchez I; Vázquez S; Prieto J
    Rev Esp Quimioter; 2012 Dec; 25(4):269-73. PubMed ID: 23303259
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analysis of quorum sensing-dependent virulence factor production and its relationship with antimicrobial susceptibility in Pseudomonas aeruginosa respiratory isolates.
    Karatuna O; Yagci A
    Clin Microbiol Infect; 2010 Dec; 16(12):1770-5. PubMed ID: 20132256
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regulation of virulence and antibiotic resistance by two-component regulatory systems in Pseudomonas aeruginosa.
    Gooderham WJ; Hancock RE
    FEMS Microbiol Rev; 2009 Mar; 33(2):279-94. PubMed ID: 19243444
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bacteriophage-derived enzyme that depolymerizes the alginic acid capsule associated with cystic fibrosis isolates of Pseudomonas aeruginosa.
    Glonti T; Chanishvili N; Taylor PW
    J Appl Microbiol; 2010 Feb; 108(2):695-702. PubMed ID: 19709344
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microbe Profile:
    Diggle SP; Whiteley M
    Microbiology (Reading); 2020 Jan; 166(1):30-33. PubMed ID: 31597590
    [No Abstract]   [Full Text] [Related]  

  • 39. Pseudomonas aeruginosa chromosomal beta-lactamase in patients with cystic fibrosis and chronic lung infection. Mechanism of antibiotic resistance and target of the humoral immune response.
    Ciofu O
    APMIS Suppl; 2003; (116):1-47. PubMed ID: 14692154
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Understanding bacterial biofilms in patients with cystic fibrosis: current and innovative approaches to potential therapies.
    Høiby N
    J Cyst Fibros; 2002 Dec; 1(4):249-54. PubMed ID: 15463822
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.