These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 20353489)

  • 21. Exercise training improves the net balance of cardiac Ca2+ handling protein expression in heart failure.
    Rolim NP; Medeiros A; Rosa KT; Mattos KC; Irigoyen MC; Krieger EM; Krieger JE; Negrão CE; Brum PC
    Physiol Genomics; 2007 May; 29(3):246-52. PubMed ID: 17244791
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High-intensity aerobic exercise training improves the heart in health and disease.
    Kemi OJ; Wisloff U
    J Cardiopulm Rehabil Prev; 2010; 30(1):2-11. PubMed ID: 20040880
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Exercise-induced changes in calcium handling in left ventricular cardiomyocytes.
    Kemi OJ; Ellingsen O; Smith GL; Wisloff U
    Front Biosci; 2008 Jan; 13():356-68. PubMed ID: 17981553
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Mechanisms of self-regulation of myocardial contractile function during hypokinesia and muscle training].
    Chinkin AS
    Usp Fiziol Nauk; 2012; 43(2):72-82. PubMed ID: 22690592
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Exercise training restores cardiac protein quality control in heart failure.
    Campos JC; Queliconi BB; Dourado PM; Cunha TF; Zambelli VO; Bechara LR; Kowaltowski AJ; Brum PC; Mochly-Rosen D; Ferreira JC
    PLoS One; 2012; 7(12):e52764. PubMed ID: 23300764
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Calcium versus strontium handling by the heart muscle.
    Hendrych M; Olejnickova V; Novakova M
    Gen Physiol Biophys; 2016 Jan; 35(1):13-23. PubMed ID: 26612918
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Physiological cardiac remodelling in response to endurance exercise training: cellular and molecular mechanisms.
    Ellison GM; Waring CD; Vicinanza C; Torella D
    Heart; 2012 Jan; 98(1):5-10. PubMed ID: 21880653
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Coronary smooth muscle adaptation to exercise: does it play a role in cardioprotection?
    Bowles DK; Wamhoff BR
    Acta Physiol Scand; 2003 Jun; 178(2):117-21. PubMed ID: 12780385
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Adaptation of cardiac myocyte contractile properties to exercise training.
    Diffee GM
    Exerc Sport Sci Rev; 2004 Jul; 32(3):112-9. PubMed ID: 15243207
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Developmental changes of excitation-contraction coupling in the postnatal mammalian heart].
    Wang F; Cong XF; Chen X
    Sheng Li Ke Xue Jin Zhan; 2013 Jun; 44(3):227-32. PubMed ID: 24027833
    [No Abstract]   [Full Text] [Related]  

  • 31. [Contractile apparatus organization of cardiomyocytes upon their cultivation in collagen gels].
    Bil'diug NB; Iudintseva NM; Pinaev GP
    Tsitologiia; 2014; 56(11):822-7. PubMed ID: 25707209
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural, Contractile and Electrophysiological Adaptations of Cardiomyocytes to Chronic Exercise.
    Krzesiak A; Delpech N; Sebille S; Cognard C; Chatelier A
    Adv Exp Med Biol; 2017; 999():75-90. PubMed ID: 29022258
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Molecular Mechanisms Associated with Aerobic Exercise-Induced Cardiac Regeneration.
    Bo B; Zhou Y; Zheng Q; Wang G; Zhou K; Wei J
    Biomolecules; 2020 Dec; 11(1):. PubMed ID: 33375497
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Electromechanical heterogeneity of the myocardium].
    Markhasin VS; Balakin AA; Gur'ev VIu; Lukin ON; Konovalov PV; Protsenko IuL; Solov'ev OE
    Ross Fiziol Zh Im I M Sechenova; 2004 Aug; 90(8):1060-77. PubMed ID: 15552371
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cardiac molecular-acclimation mechanisms in response to swimming-induced exercise in Atlantic salmon.
    Castro V; Grisdale-Helland B; Helland SJ; Torgersen J; Kristensen T; Claireaux G; Farrell AP; Takle H
    PLoS One; 2013; 8(1):e55056. PubMed ID: 23372811
    [TBL] [Abstract][Full Text] [Related]  

  • 36. New aspects of myocardial oxygen consumption. Invited review.
    Myrmel T; Korvald C
    Scand Cardiovasc J; 2000 Jun; 34(3):233-41. PubMed ID: 10935768
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Exercise training improves cardiac function postinfarction: special emphasis on recent controversies on na+/ca2+ exchanger.
    Cheung JY; Song J; Rothblum LI; Zhang XQ
    Exerc Sport Sci Rev; 2004 Jul; 32(3):83-9. PubMed ID: 15243202
    [TBL] [Abstract][Full Text] [Related]  

  • 38. New Insights in Cardiac Calcium Handling and Excitation-Contraction Coupling.
    Gambardella J; Trimarco B; Iaccarino G; Santulli G
    Adv Exp Med Biol; 2018; 1067():373-385. PubMed ID: 28956314
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cellular adaptations of the myocardium to chronic exercise.
    Moore RL; Korzick DH
    Prog Cardiovasc Dis; 1995; 37(6):371-96. PubMed ID: 7777668
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Morphology and contractility in cardiomyocytes of rats with low exercise performance.
    Quintão-Júnior JF; Natali AJ; Carneiro-Júnior MA; Castro CA; Drummond LR; Lavorato VN; Felix LB; Cruz Jdos S; Prímola-Gomes TN
    Arq Bras Cardiol; 2012 May; 98(5):431-6. PubMed ID: 22499334
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.