These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 20354802)
1. Humic acids as reducing agents: the involvement of quinoid moieties in arsenate reduction. Palmer NE; von Wandruszka R Environ Sci Pollut Res Int; 2010 Aug; 17(7):1362-70. PubMed ID: 20354802 [TBL] [Abstract][Full Text] [Related]
2. Np(V) reduction by humic acid: contribution of reduced sulfur functionalities to the redox behavior of humic acid. Schmeide K; Sachs S; Bernhard G Sci Total Environ; 2012 Mar; 419():116-23. PubMed ID: 22285088 [TBL] [Abstract][Full Text] [Related]
3. Modulation of optical properties of dissolved humic substances by their molecular complexity. Mignone RA; Martin MV; Vieyra FE; Palazzi VI; de Mishima BL; Mártire DO; Borsarelli CD Photochem Photobiol; 2012; 88(4):792-800. PubMed ID: 22394072 [TBL] [Abstract][Full Text] [Related]
4. Arsenic redox changes by microbially and chemically formed semiquinone radicals and hydroquinones in a humic substance model quinone. Jiang J; Bauer I; Paul A; Kappler A Environ Sci Technol; 2009 May; 43(10):3639-45. PubMed ID: 19544866 [TBL] [Abstract][Full Text] [Related]
5. Redox and complexation interactions of neptunium(V) with quinonoid-enriched humic derivatives. Shcherbina NS; Perminova IV; Kalmykov SN; Kovalenko AN; Haire RG; Novikov AP Environ Sci Technol; 2007 Oct; 41(20):7010-5. PubMed ID: 17993141 [TBL] [Abstract][Full Text] [Related]
6. Complexation of arsenate to humic acid with different molecular weight fractions in aqueous solution. Li S; Lu F; Lv H; Zhou Y; Gomez MA; Yao S; Shi Z; Jia Y J Environ Sci Health A Tox Hazard Subst Environ Eng; 2021; 56(13):1428-1434. PubMed ID: 34870539 [TBL] [Abstract][Full Text] [Related]
7. Electron paramagnetic resonance study of the generation of reactive oxygen species catalysed by transition metals and quinoid redox cycling by inhalable ambient particulate matter. Valavanidis A; Fiotakis K; Bakeas E; Vlahogianni T Redox Rep; 2005; 10(1):37-51. PubMed ID: 15829110 [TBL] [Abstract][Full Text] [Related]
8. Characterization and quantification of reversible redox sites in humic substances. Ratasuk N; Nanny MA Environ Sci Technol; 2007 Nov; 41(22):7844-50. PubMed ID: 18075097 [TBL] [Abstract][Full Text] [Related]
9. Reducing capacities and redox potentials of humic substances extracted from sewage sludge. Yang Z; Du M; Jiang J Chemosphere; 2016 Feb; 144():902-8. PubMed ID: 26432531 [TBL] [Abstract][Full Text] [Related]
10. Reducing capacities in continuously released low molecular weight fractions from bulk humic acids. Cao J; Jiang J J Environ Manage; 2019 Aug; 244():172-179. PubMed ID: 31121504 [TBL] [Abstract][Full Text] [Related]
11. Effects of fulvic and humic acids on arsenate adsorption to goethite: experiments and modeling. Weng L; Van Riemsdiik WH; Hiemstra T Environ Sci Technol; 2009 Oct; 43(19):7198-204. PubMed ID: 19848122 [TBL] [Abstract][Full Text] [Related]
12. Arsenite and arsenate binding to dissolved humic acids: influence of pH, type of humic acid, and aluminum. Buschmann J; Kappeler A; Lindauer U; Kistler D; Berg M; Sigg L Environ Sci Technol; 2006 Oct; 40(19):6015-20. PubMed ID: 17051793 [TBL] [Abstract][Full Text] [Related]
13. Influences of size-fractionated humic acids on arsenite and arsenate complexation and toxicity to Daphnia magna. Ren J; Fan W; Wang X; Ma Q; Li X; Xu Z; Wei C Water Res; 2017 Jan; 108():68-77. PubMed ID: 27865433 [TBL] [Abstract][Full Text] [Related]
14. Complexation of arsenate with humic substance in water extract of compost. Lin HT; Wang MC; Li GC Chemosphere; 2004 Sep; 56(11):1105-12. PubMed ID: 15276723 [TBL] [Abstract][Full Text] [Related]
15. Analysis of electrophoretic soil humic acids fractions by reversed-phase high performance liquid chromatography with on-line absorbance and fluorescence detection. Trubetskoj OA; Richard C; Guyot G; Voyard G; Trubetskaya OE J Chromatogr A; 2012 Jun; 1243():62-8. PubMed ID: 22564698 [TBL] [Abstract][Full Text] [Related]
16. Reducing Capacities and Distribution of Redox-Active Functional Groups in Low Molecular Weight Fractions of Humic Acids. Yang Z; Kappler A; Jiang J Environ Sci Technol; 2016 Nov; 50(22):12105-12113. PubMed ID: 27759370 [TBL] [Abstract][Full Text] [Related]
17. Impact of inorganic ions and natural organic matter on arsenates removal by ferrate(VI): Understanding a complex effect of phosphates ions. Kolařík J; Prucek R; Tuček J; Filip J; Sharma VK; Zbořil R Water Res; 2018 Sep; 141():357-365. PubMed ID: 29804022 [TBL] [Abstract][Full Text] [Related]
18. Distribution of persistent free radicals in different molecular weight fractions from peat humic acids and their impact in reducing goethite. Shi Y; Zhang C; Liu J; Dai Q; Jiang Y; Xi M; Jia H Sci Total Environ; 2021 Nov; 797():149173. PubMed ID: 34303988 [TBL] [Abstract][Full Text] [Related]
19. Nature and abundance of organic radicals in natural organic matter: effect of pH and irradiation. Paul A; Stösser R; Zehl A; Zwirnmann E; Vogt RD; Steinberg CE Environ Sci Technol; 2006 Oct; 40(19):5897-903. PubMed ID: 17051776 [TBL] [Abstract][Full Text] [Related]
20. Modeling the Reduction Kinetics of Munition Compounds by Humic Acids. Hickey KP; Murillo-Gelvez J; Di Toro DM; Allen HE; Carbonaro RF; Chiu PC Environ Sci Technol; 2022 Apr; 56(8):4926-4935. PubMed ID: 35349281 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]