BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 20354802)

  • 1. Humic acids as reducing agents: the involvement of quinoid moieties in arsenate reduction.
    Palmer NE; von Wandruszka R
    Environ Sci Pollut Res Int; 2010 Aug; 17(7):1362-70. PubMed ID: 20354802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Np(V) reduction by humic acid: contribution of reduced sulfur functionalities to the redox behavior of humic acid.
    Schmeide K; Sachs S; Bernhard G
    Sci Total Environ; 2012 Mar; 419():116-23. PubMed ID: 22285088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of optical properties of dissolved humic substances by their molecular complexity.
    Mignone RA; Martin MV; Vieyra FE; Palazzi VI; de Mishima BL; Mártire DO; Borsarelli CD
    Photochem Photobiol; 2012; 88(4):792-800. PubMed ID: 22394072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arsenic redox changes by microbially and chemically formed semiquinone radicals and hydroquinones in a humic substance model quinone.
    Jiang J; Bauer I; Paul A; Kappler A
    Environ Sci Technol; 2009 May; 43(10):3639-45. PubMed ID: 19544866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redox and complexation interactions of neptunium(V) with quinonoid-enriched humic derivatives.
    Shcherbina NS; Perminova IV; Kalmykov SN; Kovalenko AN; Haire RG; Novikov AP
    Environ Sci Technol; 2007 Oct; 41(20):7010-5. PubMed ID: 17993141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complexation of arsenate to humic acid with different molecular weight fractions in aqueous solution.
    Li S; Lu F; Lv H; Zhou Y; Gomez MA; Yao S; Shi Z; Jia Y
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2021; 56(13):1428-1434. PubMed ID: 34870539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electron paramagnetic resonance study of the generation of reactive oxygen species catalysed by transition metals and quinoid redox cycling by inhalable ambient particulate matter.
    Valavanidis A; Fiotakis K; Bakeas E; Vlahogianni T
    Redox Rep; 2005; 10(1):37-51. PubMed ID: 15829110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization and quantification of reversible redox sites in humic substances.
    Ratasuk N; Nanny MA
    Environ Sci Technol; 2007 Nov; 41(22):7844-50. PubMed ID: 18075097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reducing capacities and redox potentials of humic substances extracted from sewage sludge.
    Yang Z; Du M; Jiang J
    Chemosphere; 2016 Feb; 144():902-8. PubMed ID: 26432531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reducing capacities in continuously released low molecular weight fractions from bulk humic acids.
    Cao J; Jiang J
    J Environ Manage; 2019 Aug; 244():172-179. PubMed ID: 31121504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of fulvic and humic acids on arsenate adsorption to goethite: experiments and modeling.
    Weng L; Van Riemsdiik WH; Hiemstra T
    Environ Sci Technol; 2009 Oct; 43(19):7198-204. PubMed ID: 19848122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arsenite and arsenate binding to dissolved humic acids: influence of pH, type of humic acid, and aluminum.
    Buschmann J; Kappeler A; Lindauer U; Kistler D; Berg M; Sigg L
    Environ Sci Technol; 2006 Oct; 40(19):6015-20. PubMed ID: 17051793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influences of size-fractionated humic acids on arsenite and arsenate complexation and toxicity to Daphnia magna.
    Ren J; Fan W; Wang X; Ma Q; Li X; Xu Z; Wei C
    Water Res; 2017 Jan; 108():68-77. PubMed ID: 27865433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complexation of arsenate with humic substance in water extract of compost.
    Lin HT; Wang MC; Li GC
    Chemosphere; 2004 Sep; 56(11):1105-12. PubMed ID: 15276723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of electrophoretic soil humic acids fractions by reversed-phase high performance liquid chromatography with on-line absorbance and fluorescence detection.
    Trubetskoj OA; Richard C; Guyot G; Voyard G; Trubetskaya OE
    J Chromatogr A; 2012 Jun; 1243():62-8. PubMed ID: 22564698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reducing Capacities and Distribution of Redox-Active Functional Groups in Low Molecular Weight Fractions of Humic Acids.
    Yang Z; Kappler A; Jiang J
    Environ Sci Technol; 2016 Nov; 50(22):12105-12113. PubMed ID: 27759370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of inorganic ions and natural organic matter on arsenates removal by ferrate(VI): Understanding a complex effect of phosphates ions.
    Kolařík J; Prucek R; Tuček J; Filip J; Sharma VK; Zbořil R
    Water Res; 2018 Sep; 141():357-365. PubMed ID: 29804022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distribution of persistent free radicals in different molecular weight fractions from peat humic acids and their impact in reducing goethite.
    Shi Y; Zhang C; Liu J; Dai Q; Jiang Y; Xi M; Jia H
    Sci Total Environ; 2021 Nov; 797():149173. PubMed ID: 34303988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nature and abundance of organic radicals in natural organic matter: effect of pH and irradiation.
    Paul A; Stösser R; Zehl A; Zwirnmann E; Vogt RD; Steinberg CE
    Environ Sci Technol; 2006 Oct; 40(19):5897-903. PubMed ID: 17051776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling the Reduction Kinetics of Munition Compounds by Humic Acids.
    Hickey KP; Murillo-Gelvez J; Di Toro DM; Allen HE; Carbonaro RF; Chiu PC
    Environ Sci Technol; 2022 Apr; 56(8):4926-4935. PubMed ID: 35349281
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.