BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 20354900)

  • 1. Development of a microalgal PAM test method for Cu(II) in waters: comparison of using spectrofluorometry.
    Peña-Vázquez E; Pérez-Conde C; Costas E; Moreno-Bondi MC
    Ecotoxicology; 2010 Aug; 19(6):1059-65. PubMed ID: 20354900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interference of heavy metals on the photosynthetic response from a Cr(VI)-resistant Dictyosphaerium chlorelloides strain.
    D'ors A; Cortés AA; Sánchez-Fortún A; Bartolomé MC; Sánchez-Fortún S
    Ecotoxicology; 2016 Jan; 25(1):15-21. PubMed ID: 26458928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microalgae fiber optic biosensors for herbicide monitoring using sol-gel technology.
    Peña-Vázquez E; Maneiro E; Pérez-Conde C; Moreno-Bondi MC; Costas E
    Biosens Bioelectron; 2009 Aug; 24(12):3538-43. PubMed ID: 19497732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toxicity and bioaccumulation of copper in three green microalgal species.
    Yan H; Pan G
    Chemosphere; 2002 Nov; 49(5):471-6. PubMed ID: 12363319
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of the impact induced by Cd in binary interactions with other divalent metals on wild-type and Cd-resistant strains of Dictyosphaerium chlorelloides.
    Téllez AAC; Sánchez-Fortún S; Sánchez-Fortún A; García-Pérez ME; Chacon-Garcia L; Bartolomé MC
    Environ Sci Pollut Res Int; 2022 Mar; 29(15):22555-22565. PubMed ID: 34791630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Copper toxicity and the influence of water quality of Dongnai River and Mekong River waters on copper bioavailability and toxicity to three tropical species.
    Bui TK; Do-Hong LC; Dao TS; Hoang TC
    Chemosphere; 2016 Feb; 144():872-8. PubMed ID: 26421627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphological and physiological changes exhibited by a Cd-resistant Dictyosphaerium chlorelloides strain and its cadmium removal capacity.
    Bartolomé MC; Cortés AA; Sánchez-Fortún A; Garnica-Romo MG; Sánchez-Carrillo S; Sánchez-Fortún S
    Int J Phytoremediation; 2016 Dec; 18(12):1171-7. PubMed ID: 27222159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Xurography-based microfluidic algal biosensor and dedicated portable measurement station for online monitoring of urban polluted samples.
    Gosset A; Durrieu C; Renaud L; Deman AL; Barbe P; Bayard R; Chateaux JF
    Biosens Bioelectron; 2018 Oct; 117():669-677. PubMed ID: 30007197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microalgae dual-head biosensors for selective detection of herbicides with fiber-optic luminescent O2 transduction.
    Haigh-Flórez D; de la Hera C; Costas E; Orellana G
    Biosens Bioelectron; 2014 Apr; 54():484-91. PubMed ID: 24316451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward Validation of Toxicological Interpretation of Diffusive Gradients in Thin Films in Marine Waters Impacted by Copper.
    Strivens J; Hayman N; Rosen G; Myers-Pigg A
    Environ Toxicol Chem; 2020 Apr; 39(4):873-881. PubMed ID: 32004383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid in situ determination of heavy metal concentrations in polluted water via portable XRF: Using Cu and Pb as example.
    Zhou S; Yuan Z; Cheng Q; Zhang Z; Yang J
    Environ Pollut; 2018 Dec; 243(Pt B):1325-1333. PubMed ID: 30268983
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cu and Cd affect distinctly the physiology of a cosmopolitan tropical freshwater phytoplankton.
    Echeveste P; Silva JC; Lombardi AT
    Ecotoxicol Environ Saf; 2017 Sep; 143():228-235. PubMed ID: 28551580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly sensitive determination of Cu(II) iron in ng/mL level in natural waters using Sulfochlorophenol S.
    Zhao D; Zhang G
    Environ Monit Assess; 2015 Mar; 187(3):72. PubMed ID: 25647804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ligand-Capped CdTe Quantum Dots as a Fluorescent Nanosensor for Detection of Copper Ions in Environmental Water Sample.
    Elmizadeh H; Soleimani M; Faridbod F; Bardajee GR
    J Fluoresc; 2017 Nov; 27(6):2323-2333. PubMed ID: 28936785
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calibrating biomonitors to ecological disturbance: a new technique for explaining metal effects in natural waters.
    Luoma SN; Cain DJ; Rainbow PS
    Integr Environ Assess Manag; 2010 Apr; 6(2):199-209. PubMed ID: 20821686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combined effects of copper and ultraviolet radiation on a microscopic green alga in natural soft lake waters of varying dissolved organic carbon content.
    West LJ; Li K; Greenberg BM; Mierle G; Smith RE
    Aquat Toxicol; 2003 Jun; 64(1):39-52. PubMed ID: 12763674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of pH on the survival of Dictyosphaerium chlorelloides populations living in aquatic environments highly contaminated with chromium.
    Pereira M; Bartolomé MC; Sánchez-Fortún S
    Ecotoxicol Environ Saf; 2013 Dec; 98():82-7. PubMed ID: 24125866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of phosphorus on copper toxicity to Selenastrum gracile (Reinsch) Korshikov.
    Rocha GS; Lombardi AT; Melão Mda G
    Ecotoxicol Environ Saf; 2016 Jun; 128():30-5. PubMed ID: 26874986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Testing of two different strains of green microalgae for Cu and Ni removal from aqueous media.
    Rugnini L; Costa G; Congestri R; Bruno L
    Sci Total Environ; 2017 Dec; 601-602():959-967. PubMed ID: 28582741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of varying physicochemistry of European surface waters on the copper toxicity to the green alga Pseudokirchneriella subcapitata.
    Heijerick DG; Bossuyt BT; De Schamphelaere KA; Indeherberg M; Mingazzini M; Janssen CR
    Ecotoxicology; 2005 Aug; 14(6):661-70. PubMed ID: 16215700
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.