These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 20354902)
1. Estimating dynamic gait stability using data from non-aligned inertial sensors. Bruijn SM; Ten Kate WR; Faber GS; Meijer OG; Beek PJ; van Dieën JH Ann Biomed Eng; 2010 Aug; 38(8):2588-93. PubMed ID: 20354902 [TBL] [Abstract][Full Text] [Related]
2. Statistical precision and sensitivity of measures of dynamic gait stability. Bruijn SM; van Dieën JH; Meijer OG; Beek PJ J Neurosci Methods; 2009 Apr; 178(2):327-33. PubMed ID: 19135478 [TBL] [Abstract][Full Text] [Related]
3. The influence of gait speed on local dynamic stability of walking. England SA; Granata KP Gait Posture; 2007 Feb; 25(2):172-8. PubMed ID: 16621565 [TBL] [Abstract][Full Text] [Related]
4. Measures of gait stability: performance on adults and toddlers at the beginning of independent walking. Bisi MC; Riva F; Stagni R J Neuroeng Rehabil; 2014 Sep; 11():131. PubMed ID: 25186796 [TBL] [Abstract][Full Text] [Related]
5. Sensitivity of trunk variability and stability measures to balance impairments induced by galvanic vestibular stimulation during gait. van Schooten KS; Sloot LH; Bruijn SM; Kingma H; Meijer OG; Pijnappels M; van Dieën JH Gait Posture; 2011 Apr; 33(4):656-60. PubMed ID: 21435878 [TBL] [Abstract][Full Text] [Related]
6. Differences between local and orbital dynamic stability during human walking. Dingwell JB; Kang HG J Biomech Eng; 2007 Aug; 129(4):586-93. PubMed ID: 17655480 [TBL] [Abstract][Full Text] [Related]
7. Maximum Lyapunov exponents as predictors of global gait stability: a modelling approach. Bruijn SM; Bregman DJ; Meijer OG; Beek PJ; van Dieën JH Med Eng Phys; 2012 May; 34(4):428-36. PubMed ID: 21856204 [TBL] [Abstract][Full Text] [Related]
8. Local dynamic stability versus kinematic variability of continuous overground and treadmill walking. Dingwell JB; Cusumano JP; Cavanagh PR; Sternad D J Biomech Eng; 2001 Feb; 123(1):27-32. PubMed ID: 11277298 [TBL] [Abstract][Full Text] [Related]
9. Gait variability and stability measures: minimum number of strides and within-session reliability. Riva F; Bisi MC; Stagni R Comput Biol Med; 2014 Jul; 50():9-13. PubMed ID: 24792493 [TBL] [Abstract][Full Text] [Related]
10. Validation of Inertial Sensors to Evaluate Gait Stability. Riek PM; Best AN; Wu AR Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772586 [TBL] [Abstract][Full Text] [Related]
11. Estimation of gait kinematics and kinetics from inertial sensor data using optimal control of musculoskeletal models. Dorschky E; Nitschke M; Seifer AK; van den Bogert AJ; Eskofier BM J Biomech; 2019 Oct; 95():109278. PubMed ID: 31472970 [TBL] [Abstract][Full Text] [Related]
12. Walking at the preferred stride frequency maximizes local dynamic stability of knee motion. Russell DM; Haworth JL J Biomech; 2014 Jan; 47(1):102-8. PubMed ID: 24210850 [TBL] [Abstract][Full Text] [Related]
13. Is slow walking more stable? Bruijn SM; van Dieën JH; Meijer OG; Beek PJ J Biomech; 2009 Jul; 42(10):1506-1512. PubMed ID: 19446294 [TBL] [Abstract][Full Text] [Related]
14. Sensitivity of local dynamic stability of over-ground walking to balance impairment due to galvanic vestibular stimulation. Sloot LH; van Schooten KS; Bruijn SM; Kingma H; Pijnappels M; van Dieën JH Ann Biomed Eng; 2011 May; 39(5):1563-9. PubMed ID: 21222163 [TBL] [Abstract][Full Text] [Related]
15. Concurrent validity of accelerations measured using a tri-axial inertial measurement unit while walking on firm, compliant and uneven surfaces. Cole MH; van den Hoorn W; Kavanagh JK; Morrison S; Hodges PW; Smeathers JE; Kerr GK PLoS One; 2014; 9(5):e98395. PubMed ID: 24866262 [TBL] [Abstract][Full Text] [Related]
16. Validity and reliability of a portable gait analysis system for measuring spatiotemporal gait characteristics: comparison to an instrumented treadmill. Donath L; Faude O; Lichtenstein E; Nüesch C; Mündermann A J Neuroeng Rehabil; 2016 Jan; 13():6. PubMed ID: 26790409 [TBL] [Abstract][Full Text] [Related]
17. Inertial sensors in estimating walking speed and inclination: an evaluation of sensor error models. Yang S; Laudanski A; Li Q Med Biol Eng Comput; 2012 Apr; 50(4):383-93. PubMed ID: 22418894 [TBL] [Abstract][Full Text] [Related]
18. Measuring joint kinematics of treadmill walking and running: Comparison between an inertial sensor based system and a camera-based system. Nüesch C; Roos E; Pagenstert G; Mündermann A J Biomech; 2017 May; 57():32-38. PubMed ID: 28366438 [TBL] [Abstract][Full Text] [Related]
19. The implementation of inertial sensors for the assessment of temporal parameters of gait in the knee arthroplasty population. De Vroey H; Staes F; Weygers I; Vereecke E; Vanrenterghem J; Deklerck J; Van Damme G; Hallez H; Claeys K Clin Biomech (Bristol); 2018 May; 54():22-27. PubMed ID: 29533844 [TBL] [Abstract][Full Text] [Related]
20. Automatic identification of inertial sensor placement on human body segments during walking. Weenk D; van Beijnum BJ; Baten CT; Hermens HJ; Veltink PH J Neuroeng Rehabil; 2013 Mar; 10():31. PubMed ID: 23517757 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]