These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
267 related articles for article (PubMed ID: 20355108)
1. Mycorrhizal colonization and grain Cd concentration of field-grown durum wheat in response to tillage, preceding crop and phosphorus fertilization. Gao X; Akhter F; Tenuta M; Flaten DN; Gawalko EJ; Grant CA J Sci Food Agric; 2010 Apr; 90(5):750-8. PubMed ID: 20355108 [TBL] [Abstract][Full Text] [Related]
2. Cadmium concentration in durum wheat grain (Triticum turgidum) as influenced by nitrogen rate, seeding date and soil type. Perilli P; Mitchell LG; Grant CA; Pisante M J Sci Food Agric; 2010 Apr; 90(5):813-22. PubMed ID: 20355117 [TBL] [Abstract][Full Text] [Related]
3. Genetic variability in arbuscular mycorrhizal fungi compatibility supports the selection of durum wheat genotypes for enhancing soil ecological services and cropping systems in Canada. Singh AK; Hamel C; Depauw RM; Knox RE Can J Microbiol; 2012 Mar; 58(3):293-302. PubMed ID: 22356605 [TBL] [Abstract][Full Text] [Related]
4. Arbuscular mycorrhizal fungal diversity, root colonization, and soil alkaline phosphatase activity in response to maize-wheat rotation and no-tillage in North China. Hu J; Yang A; Zhu A; Wang J; Dai J; Wong MH; Lin X J Microbiol; 2015 Jul; 53(7):454-61. PubMed ID: 26115994 [TBL] [Abstract][Full Text] [Related]
5. Arbuscular mycorrhizal fungal inoculation and soil zinc fertilisation affect the productivity and the bioavailability of zinc and iron in durum wheat. Tran BTT; Cavagnaro TR; Watts-Williams SJ Mycorrhiza; 2019 Oct; 29(5):445-457. PubMed ID: 31456075 [TBL] [Abstract][Full Text] [Related]
7. Mycorrhizal effects on crop yield and soil ecosystem functions in a long-term tillage and fertilization experiment. Peng Z; Johnson NC; Jansa J; Han J; Fang Z; Zhang Y; Jiang S; Xi H; Mao L; Pan J; Zhang Q; Feng H; Fan T; Zhang J; Liu Y New Phytol; 2024 May; 242(4):1798-1813. PubMed ID: 38155454 [TBL] [Abstract][Full Text] [Related]
8. Field response of wheat to arbuscular mycorrhizal fungi and drought stress. Al-Karaki G; McMichael B; Zak J Mycorrhiza; 2004 Aug; 14(4):263-9. PubMed ID: 12942358 [TBL] [Abstract][Full Text] [Related]
9. Seasonal variation in winter wheat field soil arbuscular mycorrhizal fungus communities after non-mycorrhizal crop cultivation. Berruti A; Bianciotto V; Lumini E Mycorrhiza; 2018 Aug; 28(5-6):535-548. PubMed ID: 29931405 [TBL] [Abstract][Full Text] [Related]
10. Seed coating with arbuscular mycorrhizal fungi as an ecotechnologicalapproach for sustainable agricultural production of common wheat (Triticum aestivum L.). Oliveira RS; Rocha I; Ma Y; Vosátka M; Freitas H J Toxicol Environ Health A; 2016; 79(7):329-37. PubMed ID: 27077274 [TBL] [Abstract][Full Text] [Related]
11. How are arbuscular mycorrhizal associations related to maize growth performance during short-term cover crop rotation? Higo M; Takahashi Y; Gunji K; Isobe K J Sci Food Agric; 2018 Mar; 98(4):1388-1396. PubMed ID: 28759105 [TBL] [Abstract][Full Text] [Related]
12. Influence of cadmium and mycorrhizal fungi on the fatty acid profile of flax (Linum usitatissimum) seeds. Kaplan ME; Simmons ER; Hawkins JC; Ruane LG; Carney JM J Sci Food Agric; 2015 Sep; 95(12):2528-32. PubMed ID: 25371353 [TBL] [Abstract][Full Text] [Related]
13. Effects of cadmium and mycorrhizal fungi on growth, fitness, and cadmium accumulation in flax (Linum usitatissimum; Linaceae). Hancock LM; Ernst CL; Charneskie R; Ruane LG Am J Bot; 2012 Sep; 99(9):1445-52. PubMed ID: 22912369 [TBL] [Abstract][Full Text] [Related]
14. Soil-indigenous arbuscular mycorrhizal fungi and zeolite addition to soil synergistically increase grain yield and reduce cadmium uptake of bread wheat (through improved nitrogen and phosphorus nutrition and immobilization of Cd in roots). Baghaie AH; Aghili F; Jafarinia R Environ Sci Pollut Res Int; 2019 Oct; 26(30):30794-30807. PubMed ID: 31444728 [TBL] [Abstract][Full Text] [Related]
15. Spatial variability of soil total and DTPA-extractable cadmium caused by long-term application of phosphate fertilizers, crop rotation, and soil characteristics. Jafarnejadi AR; Sayyad G; Homaee M; Davamei AH Environ Monit Assess; 2013 May; 185(5):4087-96. PubMed ID: 22948289 [TBL] [Abstract][Full Text] [Related]
16. Preceding crop and tillage system affect winter survival of wheat and the fungal communities on young wheat roots and in soil. Friberg H; Persson P; Jensen DF; Bergkvist G FEMS Microbiol Lett; 2019 Aug; 366(15):. PubMed ID: 31504475 [TBL] [Abstract][Full Text] [Related]
17. Abundance of the arbuscular mycorrhizal fungal taxa associated with the roots and rhizosphere soil of different durum wheat cultivars in the Canadian prairies. Ellouze W; Hamel C; Singh AK; Mishra V; DePauw RM; Knox RE Can J Microbiol; 2018 Aug; 64(8):527-536. PubMed ID: 29633625 [TBL] [Abstract][Full Text] [Related]
18. Risk assessment of replacing conventional P fertilizers with biomass ash: Residual effects on plant yield, nutrition, cadmium accumulation and mycorrhizal status. Cruz-Paredes C; López-García Á; Rubæk GH; Hovmand MF; Sørensen P; Kjøller R Sci Total Environ; 2017 Jan; 575():1168-1176. PubMed ID: 27712871 [TBL] [Abstract][Full Text] [Related]
19. Bacillus sp. and arbuscular mycorrhizal fungi consortia enhance wheat nutrient and yield in the second-year field trial: Superior performance in comparison with chemical fertilizers. Yadav R; Ror P; Beniwal R; Kumar S; Ramakrishna W J Appl Microbiol; 2022 Mar; 132(3):2203-2219. PubMed ID: 34800074 [TBL] [Abstract][Full Text] [Related]
20. Cadmium Concentration in Grains of Durum Wheat (Triticum turgidum L. subsp. durum). Vergine M; Aprile A; Sabella E; Genga A; Siciliano M; Rampino P; Lenucci MS; Luvisi A; Bellis L J Agric Food Chem; 2017 Aug; 65(30):6240-6246. PubMed ID: 28686843 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]