These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Gold nanoparticle decorated multi-walled carbon nanotubes as counter electrode for dye sensitized solar cells. Kaniyoor A; Ramaprabhu S J Nanosci Nanotechnol; 2012 Nov; 12(11):8323-9. PubMed ID: 23421212 [TBL] [Abstract][Full Text] [Related]
4. Creating a uniform distribution of fullerene C60 nanorods in a polymer matrix and its photovoltaic applications. Lu G; Li L; Yang X Small; 2008 May; 4(5):601-6. PubMed ID: 18446798 [No Abstract] [Full Text] [Related]
5. Tuning the properties of polymer bulk heterojunction solar cells by adjusting fullerene size to control intercalation. Cates NC; Gysel R; Beiley Z; Miller CE; Toney MF; Heeney M; McCulloch I; McGehee MD Nano Lett; 2009 Dec; 9(12):4153-7. PubMed ID: 19780570 [TBL] [Abstract][Full Text] [Related]
6. Hierarchically Structured Hole Transport Layers of Spiro-OMeTAD and Multiwalled Carbon Nanotubes for Perovskite Solar Cells. Lee J; Menamparambath MM; Hwang JY; Baik S ChemSusChem; 2015 Jul; 8(14):2358-62. PubMed ID: 26013428 [TBL] [Abstract][Full Text] [Related]
7. Electrospun carbon nanofibers as low-cost counter electrode for dye-sensitized solar cells. Joshi P; Zhang L; Chen Q; Galipeau D; Fong H; Qiao Q ACS Appl Mater Interfaces; 2010 Dec; 2(12):3572-7. PubMed ID: 21073177 [TBL] [Abstract][Full Text] [Related]
8. Hybrid heterojunction and photoelectrochemistry solar cell based on silicon nanowires and double-walled carbon nanotubes. Shu Q; Wei J; Wang K; Zhu H; Li Z; Jia Y; Gui X; Guo N; Li X; Ma C; Wu D Nano Lett; 2009 Dec; 9(12):4338-42. PubMed ID: 19852483 [TBL] [Abstract][Full Text] [Related]
9. Double-walled carbon nanotube solar cells. Wei J; Jia Y; Shu Q; Gu Z; Wang K; Zhuang D; Zhang G; Wang Z; Luo J; Cao A; Wu D Nano Lett; 2007 Aug; 7(8):2317-21. PubMed ID: 17608444 [TBL] [Abstract][Full Text] [Related]
10. Carbon nanotube/graphene nanocomposite as efficient counter electrodes in dye-sensitized solar cells. Velten J; Mozer AJ; Li D; Officer D; Wallace G; Baughman R; Zakhidov A Nanotechnology; 2012 Mar; 23(8):085201. PubMed ID: 22293392 [TBL] [Abstract][Full Text] [Related]
11. Hierarchical placement and associated optoelectronic impact of carbon nanotubes in polymer-fullerene solar cells. Chaudhary S; Lu H; Müller AM; Bardeen CJ; Ozkan M Nano Lett; 2007 Jul; 7(7):1973-9. PubMed ID: 17570731 [TBL] [Abstract][Full Text] [Related]
13. Design of an assembly of poly(benzimidazole), carbon nanotubes, and Pt nanoparticles for a fuel-cell electrocatalyst with an ideal interfacial nanostructure. Okamoto M; Fujigaya T; Nakashima N Small; 2009 Mar; 5(6):735-40. PubMed ID: 19263429 [TBL] [Abstract][Full Text] [Related]
14. Electrical transport characterization of PEDOT:PSS/n-Si Schottky diodes and their applications in solar cells. Khurelbaatar Z; Hyung JH; Kim GS; Park NW; Shim KH; Lee SK J Nanosci Nanotechnol; 2014 Jun; 14(6):4394-9. PubMed ID: 24738402 [TBL] [Abstract][Full Text] [Related]
15. Energy level alignment and sub-bandgap charge generation in polymer:fullerene bulk heterojunction solar cells. Tsang SW; Chen S; So F Adv Mater; 2013 May; 25(17):2434-9. PubMed ID: 23418056 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of solution-processable carbon-based electrodes for all-carbon solar cells. Ramuz MP; Vosgueritchian M; Wei P; Wang C; Gao Y; Wu Y; Chen Y; Bao Z ACS Nano; 2012 Nov; 6(11):10384-95. PubMed ID: 23113673 [TBL] [Abstract][Full Text] [Related]
19. Open-ended TiO2 nanotubes formed by two-step anodization and their application in dye-sensitized solar cells. Yip CT; Guo M; Huang H; Zhou L; Wang Y; Huang C Nanoscale; 2012 Jan; 4(2):448-50. PubMed ID: 22159643 [TBL] [Abstract][Full Text] [Related]