These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 20355409)

  • 1. Optimization of parameters by Taguchi method for controlling purity of carbon nanotubes in chemical vapour deposition technique.
    Dasgupta K; Sen D; Mazumder S; Basak CB; Joshi JB; Banerjee S
    J Nanosci Nanotechnol; 2010 Jun; 10(6):4030-7. PubMed ID: 20355409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of carbon nanotubes by swirled floating catalyst chemical vapour deposition method.
    Abdulkareem AS; Afolabi AS; Iyuke SE; Vz Pienaar HC
    J Nanosci Nanotechnol; 2007 Sep; 7(9):3233-8. PubMed ID: 18019155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low temperature growth of double walled carbon nanotubes using FeMoMgO catalyst.
    Somanathan T; Gokulakrishnan N; Pandurangan A
    J Nanosci Nanotechnol; 2014 Apr; 14(4):3272-6. PubMed ID: 24734768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Varying Inert Gas and Acetylene Concentration on the Synthesis of Carbon Nanotubes.
    Afrin R; Abbas SM; Shah NA; Mustafa MF; Ali Z; Ahmad N
    J Nanosci Nanotechnol; 2016 Mar; 16(3):2956-9. PubMed ID: 27455741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of single-walled carbon nanotube growth parameters using alcohol catalytic chemical vapour deposition.
    Unalan HE; Chhowalla M
    Nanotechnology; 2005 Oct; 16(10):2153-63. PubMed ID: 20817989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of Fe/MgO catalyst support precursors for the chemical vapour deposition growth of carbon nanotubes.
    Palizdar M; Ahgababazadeh R; Mirhabibi A; Brydson R; Pilehvari S
    J Nanosci Nanotechnol; 2011 Jun; 11(6):5345-51. PubMed ID: 21770187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fantastic improvement in quality and quantity of carbon nanotubes synthesized on Al2O3-SiO2 supports by N2 pretreatment.
    Ghanbari H; Aghababazadeh R; Mirhabibi A; Brydson RM
    J Nanosci Nanotechnol; 2011 Oct; 11(10):8835-43. PubMed ID: 22400268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of the Taguchi analytical method for optimization of effective parameters of the chemical vapor deposition process controlling the production of nanotubes/nanobeads.
    Sharon M; Apte PR; Purandare SC; Zacharia R
    J Nanosci Nanotechnol; 2005 Feb; 5(2):288-95. PubMed ID: 15853150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Process synthesis and optimization for the production of carbon nanostructures.
    Iyuke SE; Mamvura TA; Liu K; Sibanda V; Meyyappan M; Varadan VK
    Nanotechnology; 2009 Sep; 20(37):375602. PubMed ID: 19706958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimized CVD production of CNT-based nanohybrids by Taguchi robust design.
    Santangelo S; Lanza M; Piperopoulos E; Milone C
    J Nanosci Nanotechnol; 2012 Mar; 12(3):2424-36. PubMed ID: 22755069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low temperature growth of carbon nanotubes from methane catalytic decomposition over nickel supported on a zeolite.
    Ziebro J; Łukasiewicz I; Borowiak-Palen E; Michalkiewicz B
    Nanotechnology; 2010 Apr; 21(14):145308. PubMed ID: 20234080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purity-enhanced bulk synthesis of thin single-wall carbon nanotubes using iron-copper catalysts.
    Lim HE; Miyata Y; Nakayama T; Chen S; Kitaura R; Shinohara H
    Nanotechnology; 2011 Sep; 22(39):395602. PubMed ID: 21891846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Green approach to synthesize multi-walled carbon nanotubes by using metal formate as catalyst precursors.
    Rajarao R; Bhat BR
    J Nanosci Nanotechnol; 2013 Mar; 13(3):2153-8. PubMed ID: 23755659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mass Production of Carbon Nanofibers Using Microwave Technology.
    Mubarak NM; Abdullah EC; Sahu JN; Jayakumar NS; Ganesan P
    J Nanosci Nanotechnol; 2015 Dec; 15(12):9571-7. PubMed ID: 26682380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth of few-wall carbon nanotubes with narrow diameter distribution over Fe-Mo-MgO catalyst by methane/acetylene catalytic decomposition.
    Labunov VA; Basaev AS; Shulitski BG; Shaman YP; Komissarov I; Prudnikava AL; Tay BK; Shakerzadeh M
    Nanoscale Res Lett; 2012 Feb; 7(1):102. PubMed ID: 22300375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of double-walled carbon nanotubes by catalytic chemical vapor deposition and their field emission properties.
    Lee YD; Lee HJ; Han JH; Yoo JE; Lee YH; Kim JK; Nahm S; Ju BK
    J Phys Chem B; 2006 Mar; 110(11):5310-4. PubMed ID: 16539462
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of Mass Flow in the Synthesis of Ferromagnetic Carbon Nanotubes in Chemical Vapor Deposition System.
    Raniszewski G; Pietrzak Ł
    Materials (Basel); 2021 Jan; 14(3):. PubMed ID: 33525748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effective supergrowth of vertical aligned carbon nanotubes at low temperature and pressure.
    Somanathan T; Dijon J; Fournier A; Okuno H
    J Nanosci Nanotechnol; 2014 Mar; 14(3):2520-6. PubMed ID: 24745257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of single-walled carbon nanotubes from alcohol and generation mechanism by molecular dynamics simulations.
    Maruyama S; Murakami Y; Shibuta Y; Miyauchi Y; Chiashi S
    J Nanosci Nanotechnol; 2004 Apr; 4(4):360-7. PubMed ID: 15296225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neurotransmitter Dopamine Enhanced Sensing Detection Using Fibre-Like Carbon Nanotubes by Chemical Vapor Deposition Technique.
    Krishna VM; Somanathan T; Manikandan E; Tadi KK; Uvarajan S
    J Nanosci Nanotechnol; 2018 Aug; 18(8):5380-5389. PubMed ID: 29458589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.