These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 20355411)
1. Ferrocene derived carbon nanotubes and their application as electrochemical double layer capacitor electrodes. Shah R; Zhang XF; An X; Kar S; Talapatra S J Nanosci Nanotechnol; 2010 Jun; 10(6):4043-8. PubMed ID: 20355411 [TBL] [Abstract][Full Text] [Related]
2. Electrochemical double layer capacitor electrodes using aligned carbon nanotubes grown directly on metals. Shah R; Zhang X; Talapatra S Nanotechnology; 2009 Sep; 20(39):395202. PubMed ID: 19726841 [TBL] [Abstract][Full Text] [Related]
3. Toward Small-Diameter Carbon Nanotubes Synthesized from Captured Carbon Dioxide: Critical Role of Catalyst Coarsening. Douglas A; Carter R; Li M; Pint CL ACS Appl Mater Interfaces; 2018 Jun; 10(22):19010-19018. PubMed ID: 29715008 [TBL] [Abstract][Full Text] [Related]
4. Direct growth of horizontally aligned carbon nanotubes between electrodes and its application to field-effect transistors. Hayashi Y; Jang B; Iijima T; Tokunaga T; Hayashi A; Tanemura M; Amaratunga GA J Nanosci Nanotechnol; 2011 Dec; 11(12):11011-4. PubMed ID: 22409045 [TBL] [Abstract][Full Text] [Related]
5. Processable hybrids of ferrocene-containing poly(phenylacetylene)s and carbon nanotubes: fabrication and properties. Yuan WZ; Sun JZ; Liu JZ; Dong Y; Li Z; Xu HP; Qin A; Häussler M; Jin JK; Zheng Q; Tang BZ J Phys Chem B; 2008 Jul; 112(30):8896-905. PubMed ID: 18593150 [TBL] [Abstract][Full Text] [Related]
6. Cl-Assisted Large Scale Synthesis of Cm-Scale Buckypapers of Fe₃C-Filled Carbon Nanotubes with Pseudo-Capacitor Properties: The Key Role of SBA-16 Catalyst Support as Synthesis Promoter. Boi FS; He Y; Wen J; Wang S; Yan K; Zhang J; Medranda D; Borowiec J; Corrias A Materials (Basel); 2017 Oct; 10(10):. PubMed ID: 29065561 [TBL] [Abstract][Full Text] [Related]
8. Synthesis and characterizations of amorphous carbon nanotubes by pyrolysis of ferrocene confined within AAM templates. Hu ZD; Hu YF; Chen Q; Duan XF; Peng LM J Phys Chem B; 2006 Apr; 110(16):8263-7. PubMed ID: 16623505 [TBL] [Abstract][Full Text] [Related]
9. Formation of carbon nanotubes without iron inclusion and their alignment through ferrocene and ferrocene-ethylene pyrolysis. Awasthi K; Singh AK; Srivastava ON J Nanosci Nanotechnol; 2003 Dec; 3(6):540-4. PubMed ID: 15002137 [TBL] [Abstract][Full Text] [Related]
10. High-performance non-enzymatic catalysts based on 3D hierarchical hollow porous Co Wang S; Zhang X; Huang J; Chen J Anal Bioanal Chem; 2018 Mar; 410(7):2019-2029. PubMed ID: 29392380 [TBL] [Abstract][Full Text] [Related]
11. Thermal treatment effects on charge storage performance of graphene-based materials for supercapacitors. Zhang H; Bhat VV; Gallego NC; Contescu CI ACS Appl Mater Interfaces; 2012 Jun; 4(6):3239-46. PubMed ID: 22680779 [TBL] [Abstract][Full Text] [Related]
12. High Purity Single Wall Carbon Nanotube by Oxygen-Containing Functional Group of Ferrocene-Derived Catalyst Precursor by Floating Catalyst Chemical Vapor Deposition. Moon SY; Jeon SY; Lee SH; Lee A; Kim SM Nanomaterials (Basel); 2022 Mar; 12(5):. PubMed ID: 35269351 [TBL] [Abstract][Full Text] [Related]
13. Low-dimensional carbon and MXene-based electrochemical capacitor electrodes. Yoon Y; Lee K; Lee H Nanotechnology; 2016 Apr; 27(17):172001. PubMed ID: 26988574 [TBL] [Abstract][Full Text] [Related]
14. Uniform implantation of CNTs on total activated carbon surfaces: a smart engineering protocol for commercial supercapacitor applications. Jiang J; Li L; Liu Y; Liu S; Xu M; Zhu J Nanotechnology; 2017 Apr; 28(14):145402. PubMed ID: 28273052 [TBL] [Abstract][Full Text] [Related]
15. Splitting of a vertical multiwalled carbon nanotube carpet to a graphene nanoribbon carpet and its use in supercapacitors. Zhang C; Peng Z; Lin J; Zhu Y; Ruan G; Hwang CC; Lu W; Hauge RH; Tour JM ACS Nano; 2013 Jun; 7(6):5151-9. PubMed ID: 23672653 [TBL] [Abstract][Full Text] [Related]
16. Influence of Multiwalled Carbon Nanotubes as Additives in Biomass-Derived Carbons for Supercapacitor Applications. Rey-Raap N; Enterría M; Martins JI; Pereira MFR; Figueiredo JL ACS Appl Mater Interfaces; 2019 Feb; 11(6):6066-6077. PubMed ID: 30652469 [TBL] [Abstract][Full Text] [Related]
17. Electrochemical behaviors of double-walled carbon nanotubes encapsulating ferrocene. Qiu H; Sun N; Li M; Shi Z; Qiu J; Gu Z; Yang J J Nanosci Nanotechnol; 2011 May; 11(5):4034-8. PubMed ID: 21780402 [TBL] [Abstract][Full Text] [Related]
18. Progress towards high-power Li/CFx batteries: electrode architectures using carbon nanotubes with CFx. Zhang Q; Takeuchi KJ; Takeuchi ES; Marschilok AC Phys Chem Chem Phys; 2015 Sep; 17(35):22504-18. PubMed ID: 26280394 [TBL] [Abstract][Full Text] [Related]
19. High Surface Area Electrodes Derived from Polymer Wrapped Carbon Nanotubes for Enhanced Energy Storage Devices. Bakhtiary Davijani AA; Liu HC; Gupta K; Kumar S ACS Appl Mater Interfaces; 2016 Sep; 8(37):24918-23. PubMed ID: 27556746 [TBL] [Abstract][Full Text] [Related]
20. The use of microwave plasma-assisted CVD on nanostructured iron catalysts to grow isolated bundles of carbon nanotubes. Assouar MB; Dossot M; Rizk S; Tiusan C; Bougdira J Nanotechnology; 2010 Feb; 21(6):065708. PubMed ID: 20057030 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]