These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 20355416)
1. Investigation of catalytic properties of Al2O3 particles in the growth of single-walled carbon nanotubes. Liu H; Takagi D; Chiashi S; Chokan T; Homma Y J Nanosci Nanotechnol; 2010 Jun; 10(6):4068-73. PubMed ID: 20355416 [TBL] [Abstract][Full Text] [Related]
2. Effects of catalyst on the super-growth of multi-walled carbon nanotubes. Kim H; Chun KY; Choi J; Kim Y; Baik S J Nanosci Nanotechnol; 2010 May; 10(5):3362-5. PubMed ID: 20358957 [TBL] [Abstract][Full Text] [Related]
3. Quantum Chemical Simulation of Carbon Nanotube Nucleation on Al2O3 Catalysts via CH4 Chemical Vapor Deposition. Page AJ; Saha S; Li HB; Irle S; Morokuma K J Am Chem Soc; 2015 Jul; 137(29):9281-8. PubMed ID: 26148208 [TBL] [Abstract][Full Text] [Related]
4. Millimeter-tall single-walled carbon nanotubes rapidly grown with and without water. Hasegawa K; Noda S ACS Nano; 2011 Feb; 5(2):975-84. PubMed ID: 21204544 [TBL] [Abstract][Full Text] [Related]
5. Atomic-Scale Evidence of Catalyst Evolution for the Structure-Controlled Growth of Single-Walled Carbon Nanotubes. Zhao X; Sun S; Yang F; Li Y Acc Chem Res; 2022 Dec; 55(23):3334-3344. PubMed ID: 36384282 [TBL] [Abstract][Full Text] [Related]
6. Synthesis of Vertically-Aligned Carbon Nanotubes from Langmuir-Blodgett Films Deposited Fe Nanoparticles on Al2O3/Al/SiO2/Si Substrate. Takagiwa S; Kanasugi O; Nakamura K; Kushida M J Nanosci Nanotechnol; 2016 Apr; 16(4):3289-94. PubMed ID: 27451619 [TBL] [Abstract][Full Text] [Related]
7. Precise control of the number of walls formed during carbon nanotube growth using chemical vapor deposition. Yang HS; Zhang L; Dong XH; Zhu WM; Zhu J; Nelson BJ; Zhang XB Nanotechnology; 2012 Feb; 23(6):065604. PubMed ID: 22248487 [TBL] [Abstract][Full Text] [Related]
8. Influence of carbon source and Fe-catalyst support on the growth of multi-walled carbon nanotubes. Donato MG; Galvagno S; Lanza M; Messina G; Milone C; Piperopoulos E; Pistone A; Santangelo S J Nanosci Nanotechnol; 2009 Jun; 9(6):3815-23. PubMed ID: 19504925 [TBL] [Abstract][Full Text] [Related]
9. Synthesis of carbon nanotubes and nanofibers by thermal CVD on SiO2 and Al2O3 support layers. Aguiar MR; Verissimo C; Ramos AC; Moshkalev SA; Swart JW J Nanosci Nanotechnol; 2009 Jul; 9(7):4143-50. PubMed ID: 19916421 [TBL] [Abstract][Full Text] [Related]
10. Unveiling the Evolutions of Nanotube Diameter Distribution during the Growth of Single-Walled Carbon Nanotubes. Navas H; Picher M; Andrieux-Ledier A; Fossard F; Michel T; Kozawa A; Maruyama T; Anglaret E; Loiseau A; Jourdain V ACS Nano; 2017 Mar; 11(3):3081-3088. PubMed ID: 28285520 [TBL] [Abstract][Full Text] [Related]
11. Controlling the catalyst during carbon nanotube growth. Robertson J; Hofmann S; Cantoro M; Parvez A; Ducati C; Zhong G; Sharma R; Mattevi C J Nanosci Nanotechnol; 2008 Nov; 8(11):6105-11. PubMed ID: 19198352 [TBL] [Abstract][Full Text] [Related]
12. Growth window and possible mechanism of millimeter-thick single-walled carbon nanotube forests. Hasegawa K; Noda S; Sugime H; Kakehi K; Maruyama S; Yamaguchi Y J Nanosci Nanotechnol; 2008 Nov; 8(11):6123-8. PubMed ID: 19198354 [TBL] [Abstract][Full Text] [Related]
13. Effects of the Fe-Co interaction on the growth of multiwall carbon nanotubes. Li Z; Dervishi E; Xu Y; Ma X; Saini V; Biris AS; Little R; Biris AR; Lupu D J Chem Phys; 2008 Aug; 129(7):074712. PubMed ID: 19044797 [TBL] [Abstract][Full Text] [Related]
14. Direct wall number control of carbon nanotube forests from engineered iron catalysts. Chiang WH; Futaba DN; Yumura M; Hata K J Nanosci Nanotechnol; 2013 Apr; 13(4):2745-51. PubMed ID: 23763154 [TBL] [Abstract][Full Text] [Related]
15. DFT study of Fe-Ni core-shell nanoparticles: stability, catalytic activity, and interaction with carbon atom for single-walled carbon nanotube growth. Yang Z; Wang Q; Shan X; Li WQ; Chen GH; Zhu H J Chem Phys; 2015 Feb; 142(7):074306. PubMed ID: 25702014 [TBL] [Abstract][Full Text] [Related]
16. Synthesis of graphene and carbon nanotubes hybrid nanostructures and their electrical properties. Jung SH; Song W; Lee SI; Kim Y; Cha MJ; Kim SH; Jung DS; Jung MW; An KS; Park CY J Nanosci Nanotechnol; 2013 Oct; 13(10):6730-4. PubMed ID: 24245135 [TBL] [Abstract][Full Text] [Related]
17. Structure of Supported and Unsupported Catalytic Rh Nanoparticles: Effects on Nucleation of Single-Walled Carbon Nanotubes. Gomez-Ballesteros JL; Balbuena PB Langmuir; 2017 Oct; 33(42):11109-11119. PubMed ID: 28709379 [TBL] [Abstract][Full Text] [Related]
18. Effect of the supports on catalytic activity of Pd catalysts for liquid-phase hydrodechlorination/hydrogenation reaction. Lan L; Liu Y; Liu S; Ma X; Li X; Dong Z; Xia C Environ Technol; 2019 May; 40(12):1615-1623. PubMed ID: 29319422 [TBL] [Abstract][Full Text] [Related]
19. Resonance Raman and IR spectroscopy of aligned carbon nanotube arrays with extremely narrow diameters prepared with molecular catalysts on steel substrates. Jain SM; Cesano F; Scarano D; Edvinsson T Phys Chem Chem Phys; 2017 Nov; 19(45):30667-30674. PubMed ID: 29119158 [TBL] [Abstract][Full Text] [Related]
20. Processes controlling the diameter distribution of single-walled carbon nanotubes during catalytic chemical vapor deposition. Picher M; Anglaret E; Arenal R; Jourdain V ACS Nano; 2011 Mar; 5(3):2118-25. PubMed ID: 21314174 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]