These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 20355540)

  • 21. Compact silicon-photonic mode-division (de)multiplexer using waveguide-wrapped microdisk resonators.
    Gostimirovic D; Ye WN
    Opt Lett; 2021 Jan; 46(2):388-391. PubMed ID: 33449036
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Design and demonstration of ultra-high-Q silicon microring resonator based on a multi-mode ridge waveguide.
    Zhang Y; Hu X; Chen D; Wang L; Li M; Feng P; Xiao X; Yu S
    Opt Lett; 2018 Apr; 43(7):1586-1589. PubMed ID: 29601036
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optothermal dynamics in whispering-gallery microresonators.
    Jiang X; Yang L
    Light Sci Appl; 2020; 9():24. PubMed ID: 32133127
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultra-compact microdisk resonator filters on SOI substrate.
    Morand A; Zhang Y; Martin B; Phan Huy K; Amans D; Benech P; Verbert J; Hadji E; Fédéli JM
    Opt Express; 2006 Dec; 14(26):12814-21. PubMed ID: 19532172
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High-Q diamond microresonators in the long-wave infrared.
    Lee YJ; Das A; Talghader JJ
    Opt Express; 2020 Feb; 28(4):5448-5458. PubMed ID: 32121765
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ultra-compact, high-Q silicon microdisk reflectors.
    Shi W; Yun H; Zhang W; Lin C; Chang TK; Wang Y; Jaeger NA; Chrostowski L
    Opt Express; 2012 Sep; 20(20):21840-6. PubMed ID: 23037334
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Wide-range tuning of polymer microring resonators by the photobleaching of CLD-1 chromophores.
    Poon JK; Huang Y; Paloczi GT; Yariv A; Zhang C; Dalton LR
    Opt Lett; 2004 Nov; 29(22):2584-6. PubMed ID: 15552652
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nano-plasmonics and electronics co-integration in CMOS enabling a pill-sized multiplexed fluorescence microarray system.
    Hong L; Li H; Yang H; Sengupta K
    Biomed Opt Express; 2018 Nov; 9(11):5735-5758. PubMed ID: 30460159
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ultrahigh-Q lithium niobate microring resonator with multimode waveguide.
    Wei C; Li J; Jia Q; Li D; Liu J
    Opt Lett; 2023 May; 48(9):2465-2467. PubMed ID: 37126299
    [TBL] [Abstract][Full Text] [Related]  

  • 30. On-chip second-harmonic generation and broadband parametric down-conversion in a lithium niobate microresonator.
    Luo R; Jiang H; Rogers S; Liang H; He Y; Lin Q
    Opt Express; 2017 Oct; 25(20):24531-24539. PubMed ID: 29041397
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Coupled optical microresonators for microwave all-optical generation and processing.
    Dumeige Y; Féron P
    Opt Lett; 2015 Jul; 40(14):3237-40. PubMed ID: 26176438
    [TBL] [Abstract][Full Text] [Related]  

  • 32. GeSnOI mid-infrared laser technology.
    Wang B; Sakat E; Herth E; Gromovyi M; Bjelajac A; Chaste J; Patriarche G; Boucaud P; Boeuf F; Pauc N; Calvo V; Chrétien J; Frauenrath M; Chelnokov A; Reboud V; Hartmann JM; El Kurdi M
    Light Sci Appl; 2021 Nov; 10(1):232. PubMed ID: 34785641
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Coupled-mode theory for plasmonic resonators integrated with silicon waveguides towards mid-infrared spectroscopic sensing.
    Chen C; Oh SH; Li M
    Opt Express; 2020 Jan; 28(2):2020-2036. PubMed ID: 32121901
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Soliton formation and spectral translation into visible on CMOS-compatible 4H-silicon-carbide-on-insulator platform.
    Wang C; Li J; Yi A; Fang Z; Zhou L; Wang Z; Niu R; Chen Y; Zhang J; Cheng Y; Liu J; Dong CH; Ou X
    Light Sci Appl; 2022 Dec; 11(1):341. PubMed ID: 36473842
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Experimental Demonstration of Temperature Sensing with Packaged Glass Bottle Microresonators.
    Herter J; Wunderlich V; Janeczka C; Zamora V
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30544549
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fabrication and characterization of optimized corner-cut square microresonators.
    Marchena E; Shi S; Prather D
    Opt Express; 2008 Oct; 16(21):16516-22. PubMed ID: 18852759
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process.
    Wang X; Shi W; Yun H; Grist S; Jaeger NA; Chrostowski L
    Opt Express; 2012 Jul; 20(14):15547-58. PubMed ID: 22772250
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-Q CMOS-integrated photonic crystal microcavity devices.
    Mehta KK; Orcutt JS; Tehar-Zahav O; Sternberg Z; Bafrali R; Meade R; Ram RJ
    Sci Rep; 2014 Feb; 4():4077. PubMed ID: 24518161
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of coupled microcircular resonators coupled to a bus waveguide with high output efficiency.
    Wang SJ; Yang YD; Huang YZ
    Opt Lett; 2010 Jun; 35(12):1953-5. PubMed ID: 20548350
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chip-scale nanophotonic switch based on a waveguide-metamaterial coupling mechanism.
    Chen L; Ye H; Liu Y; Yu Z; Wu D; Ma R
    Opt Lett; 2017 Oct; 42(20):4199-4202. PubMed ID: 29028047
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.