These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 20355603)
1. Buffer layer of PEDOT:PSS/graphene composite for polymer solar cells. Yin B; Liu Q; Yang L; Wu X; Liu Z; Hua Y; Yin S; Chen Y J Nanosci Nanotechnol; 2010 Mar; 10(3):1934-8. PubMed ID: 20355603 [TBL] [Abstract][Full Text] [Related]
2. Effects of ZnO nanoparticles on P3HT:PCBM organic solar cells with DMF-modulated PEDOT:PSS buffer layers. Oh SH; Heo SJ; Yang JS; Kim HJ ACS Appl Mater Interfaces; 2013 Nov; 5(22):11530-4. PubMed ID: 24175740 [TBL] [Abstract][Full Text] [Related]
3. In situ-prepared composite materials of PEDOT: PSS buffer layer-metal nanoparticles and their application to organic solar cells. Woo S; Jeong JH; Lyu HK; Han YS; Kim Y Nanoscale Res Lett; 2012 Nov; 7(1):641. PubMed ID: 23173992 [TBL] [Abstract][Full Text] [Related]
4. Efficient TCO-free organic solar cells with modified poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) anodes. Kim JR; Jung JH; Shin WS; So WW; Moon SJ J Nanosci Nanotechnol; 2011 Jan; 11(1):326-30. PubMed ID: 21446449 [TBL] [Abstract][Full Text] [Related]
5. Interface-induced crystalline ordering and favorable morphology for efficient annealing-free poly(3-hexylthiophene): fullerene derivative solar cells. Shao S; Liu J; Zhang J; Zhang B; Xie Z; Geng Y; Wang L ACS Appl Mater Interfaces; 2012 Oct; 4(10):5704-10. PubMed ID: 23027773 [TBL] [Abstract][Full Text] [Related]
6. Solution-processed vanadium oxide as a hole collection layer on an ITO electrode for high-performance polymer solar cells. Tan Z; Zhang W; Cui C; Ding Y; Qian D; Xu Q; Li L; Li S; Li Y Phys Chem Chem Phys; 2012 Nov; 14(42):14589-95. PubMed ID: 23014522 [TBL] [Abstract][Full Text] [Related]
7. Efficient organic photovoltaic devices by using PEDOT:PSSs with excellent hole extraction ability. Seo JH; Koo JR; Lee SJ; Seo BM; Kim YK J Nanosci Nanotechnol; 2011 Aug; 11(8):7307-10. PubMed ID: 22103183 [TBL] [Abstract][Full Text] [Related]
8. Functional solid additive modified PEDOT:PSS as an anode buffer layer for enhanced photovoltaic performance and stability in polymer solar cells. Xu B; Gopalan SA; Gopalan AI; Muthuchamy N; Lee KP; Lee JS; Jiang Y; Lee SW; Kim SW; Kim JS; Jeong HM; Kwon JB; Bae JH; Kang SW Sci Rep; 2017 Mar; 7():45079. PubMed ID: 28338088 [TBL] [Abstract][Full Text] [Related]
9. Improved efficiency and stability of polymer solar cells utilizing two-dimensional reduced graphene oxide: graphene oxide nanocomposites as hole-collection material. Chen L; Du D; Sun K; Hou J; Ouyang J ACS Appl Mater Interfaces; 2014 Dec; 6(24):22334-42. PubMed ID: 25415184 [TBL] [Abstract][Full Text] [Related]
10. Enhancement of organic solar cells efficiency with acetic acid modulated poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) buffer layers. Oh SH; Heo SJ; Kim HJ J Nanosci Nanotechnol; 2014 Jul; 14(7):5331-4. PubMed ID: 24758027 [TBL] [Abstract][Full Text] [Related]
11. Reproducible Dry Stamping Transfer of PEDOT:PSS Transparent Top Electrode for Flexible Semitransparent Metal Halide Perovskite Solar Cells. Lee JH; Heo JH; Im SH; Park OO ACS Appl Mater Interfaces; 2020 Mar; 12(9):10527-10534. PubMed ID: 32048829 [TBL] [Abstract][Full Text] [Related]
12. Improving the conductivity of PEDOT:PSS hole transport layer in polymer solar cells via copper(II) bromide salt doping. Zhao Z; Wu Q; Xia F; Chen X; Liu Y; Zhang W; Zhu J; Dai S; Yang S ACS Appl Mater Interfaces; 2015 Jan; 7(3):1439-48. PubMed ID: 25536017 [TBL] [Abstract][Full Text] [Related]
13. Triple cathode buffer layers composed of PCBM, C60, and LiF for high-performance planar perovskite solar cells. Liu X; Yu H; Yan L; Dong Q; Wan Q; Zhou Y; Song B; Li Y ACS Appl Mater Interfaces; 2015 Mar; 7(11):6230-7. PubMed ID: 25741994 [TBL] [Abstract][Full Text] [Related]
14. Hole transport enhancing effects of polar solvents on poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic acid) for organic solar cells. Yang JS; Oh SH; Kim DL; Kim SJ; Kim HJ ACS Appl Mater Interfaces; 2012 Oct; 4(10):5394-8. PubMed ID: 22957838 [TBL] [Abstract][Full Text] [Related]
15. Solution-processed nickel acetate as hole collection layer for polymer solar cells. Tan Z; Zhang W; Qian D; Cui C; Xu Q; Li L; Li S; Li Y Phys Chem Chem Phys; 2012 Nov; 14(41):14217-23. PubMed ID: 22825321 [TBL] [Abstract][Full Text] [Related]
16. Efficient inverted bulk heterojunction photovoltaic devices using a transparent polymeric interfacial buffer layer with C60 pendant and UV curable groups. Shin Y; Jeong S; Kwon HY; Han YS; Kwon Y J Nanosci Nanotechnol; 2012 May; 12(5):4233-7. PubMed ID: 22852380 [TBL] [Abstract][Full Text] [Related]
17. Indium tin oxide nanopillar electrodes in polymer/fullerene solar cells. Rider DA; Tucker RT; Worfolk BJ; Krause KM; Lalany A; Brett MJ; Buriak JM; Harris KD Nanotechnology; 2011 Feb; 22(8):085706. PubMed ID: 21242635 [TBL] [Abstract][Full Text] [Related]
18. High efficiency of poly(3-hexylthiophene)/[6,6]-phenyl C61 butyric acid methyl ester bulk heterojunction solar cells through precrystallining of poly(3-hexylthiophene) based layer. Chen L; Wang P; Chen Y ACS Appl Mater Interfaces; 2013 Jul; 5(13):5986-93. PubMed ID: 23763345 [TBL] [Abstract][Full Text] [Related]
19. Nanoimprint of dehydrated PEDOT:PSS for organic photovoltaics. Yang Y; Lee K; Mielczarek K; Hu W; Zakhidov A Nanotechnology; 2011 Dec; 22(48):485301. PubMed ID: 22056527 [TBL] [Abstract][Full Text] [Related]
20. Layer-by-layer graphene/TCNQ stacked films as conducting anodes for organic solar cells. Hsu CL; Lin CT; Huang JH; Chu CW; Wei KH; Li LJ ACS Nano; 2012 Jun; 6(6):5031-9. PubMed ID: 22632158 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]