These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 20355732)

  • 1. Quantum transport in graphene nanoribbons: effects of edge reconstruction and chemical reactivity.
    Dubois SM; Lopez-Bezanilla A; Cresti A; Triozon F; Biel B; Charlier JC; Roche S
    ACS Nano; 2010 Apr; 4(4):1971-6. PubMed ID: 20355732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxygen surface functionalization of graphene nanoribbons for transport gap engineering.
    Cresti A; Lopez-Bezanilla A; Ordejón P; Roche S
    ACS Nano; 2011 Nov; 5(11):9271-7. PubMed ID: 21985521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of defects on the conductance of graphene nanoribbons.
    Gorjizadeh N; Farajian AA; Kawazoe Y
    Nanotechnology; 2009 Jan; 20(1):015201. PubMed ID: 19417243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sharpening the chemical scissors to unzip carbon nanotubes: crystalline graphene nanoribbons.
    Terrones M
    ACS Nano; 2010 Apr; 4(4):1775-81. PubMed ID: 20420468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spin polarized conductance in hybrid graphene nanoribbons using 5-7 defects.
    Botello-Méndez AR; Cruz-Silva E; López-Urías F; Sumpter BG; Meunier V; Terrones M; Terrones H
    ACS Nano; 2009 Nov; 3(11):3606-12. PubMed ID: 19863086
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hierarchical graphene nanoribbon assemblies feature unique electronic and mechanical properties.
    Xu Z; Buehler MJ
    Nanotechnology; 2009 Sep; 20(37):375704. PubMed ID: 19706941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlled formation of sharp zigzag and armchair edges in graphitic nanoribbons.
    Jia X; Hofmann M; Meunier V; Sumpter BG; Campos-Delgado J; Romo-Herrera JM; Son H; Hsieh YP; Reina A; Kong J; Terrones M; Dresselhaus MS
    Science; 2009 Mar; 323(5922):1701-5. PubMed ID: 19325109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal transport by phonons in zigzag graphene nanoribbons with structural defects.
    Xie ZX; Chen KQ; Duan W
    J Phys Condens Matter; 2011 Aug; 23(31):315302. PubMed ID: 21772066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy gaps in graphene nanoribbons.
    Son YW; Cohen ML; Louie SG
    Phys Rev Lett; 2006 Nov; 97(21):216803. PubMed ID: 17155765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anomalous doping effects on charge transport in graphene nanoribbons.
    Biel B; Blase X; Triozon F; Roche S
    Phys Rev Lett; 2009 Mar; 102(9):096803. PubMed ID: 19392549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Charge-transport properties of prototype molecular materials for organic electronics based on graphene nanoribbons.
    Sancho-García JC; Pérez-Jiménez AJ
    Phys Chem Chem Phys; 2009 Apr; 11(15):2741-6. PubMed ID: 19421532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clar's theory, pi-electron distribution, and geometry of graphene nanoribbons.
    Wassmann T; Seitsonen AP; Saitta AM; Lazzeri M; Mauri F
    J Am Chem Soc; 2010 Mar; 132(10):3440-51. PubMed ID: 20178362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetism-dependent transport phenomena in hydrogenated graphene: from spin-splitting to localization effects.
    Leconte N; Soriano D; Roche S; Ordejon P; Charlier JC; Palacios JJ
    ACS Nano; 2011 May; 5(5):3987-92. PubMed ID: 21469688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electronic properties of four typical zigzag-edged graphyne nanoribbons.
    Yu G; Liu Z; Gao W; Zheng Y
    J Phys Condens Matter; 2013 Jul; 25(28):285502. PubMed ID: 23793076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemically derived, ultrasmooth graphene nanoribbon semiconductors.
    Li X; Wang X; Zhang L; Lee S; Dai H
    Science; 2008 Feb; 319(5867):1229-32. PubMed ID: 18218865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conductive junctions with parallel graphene sheets.
    Zheng X; Ke SH; Yang W
    J Chem Phys; 2010 Mar; 132(11):114703. PubMed ID: 20331312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum spin transport in carbon chains.
    Zanolli Z; Onida G; Charlier JC
    ACS Nano; 2010 Sep; 4(9):5174-80. PubMed ID: 20738122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spontaneous curling of graphene sheets with reconstructed edges.
    Shenoy VB; Reddy CD; Zhang YW
    ACS Nano; 2010 Aug; 4(8):4840-4. PubMed ID: 20731459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transport length scales in disordered graphene-based materials: strong localization regimes and dimensionality effects.
    Lherbier A; Biel B; Niquet YM; Roche S
    Phys Rev Lett; 2008 Jan; 100(3):036803. PubMed ID: 18233020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conductance gaps in graphene ribbons designed by molecular aggregations.
    Rosales L; Pacheco M; Barticevic Z; Latgé A; Orellana PA
    Nanotechnology; 2009 Mar; 20(9):095705. PubMed ID: 19417501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.