These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

566 related articles for article (PubMed ID: 20355903)

  • 81. Enhanced Efficiency of Dye-Sensitized Solar Cells Based on Polymer-Assisted Dispersion of Platinum Nanoparticles/Carbon Nanotubes Nanohybrid Films as FTO-Free Counter Electrodes.
    Li JW; Chen YS; Chen YF; Chen JX; Kuo CJ; Chen LY; Chiu CW
    Polymers (Basel); 2021 Sep; 13(18):. PubMed ID: 34578004
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Synthesis of MoIn
    Yue G; Cheng R; Gao X; Fan L; Mao Y; Gao Y; Tan F
    Nanoscale Res Lett; 2020 Sep; 15(1):179. PubMed ID: 32955683
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Carbon nanotube/graphene nanocomposite as efficient counter electrodes in dye-sensitized solar cells.
    Velten J; Mozer AJ; Li D; Officer D; Wallace G; Baughman R; Zakhidov A
    Nanotechnology; 2012 Mar; 23(8):085201. PubMed ID: 22293392
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Electrophoretic deposition of a reduced graphene-Au nanoparticle composite film as counter electrode for CdS quantum dot-sensitized solar cells.
    Zhu G; Pan L; Sun H; Liu X; Lv T; Lu T; Yang J; Sun Z
    Chemphyschem; 2012 Feb; 13(3):769-73. PubMed ID: 22323318
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Enhanced conversion efficiency in dye-sensitized solar cells based on hydrothermally synthesized TiO2-MWCNT nanocomposites.
    Muduli S; Lee W; Dhas V; Mujawar S; Dubey M; Vijayamohanan K; Han SH; Ogale S
    ACS Appl Mater Interfaces; 2009 Sep; 1(9):2030-5. PubMed ID: 20355829
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Ti Porous Film-Supported NiCo₂S₄ Nanotubes Counter Electrode for Quantum-Dot-Sensitized Solar Cells.
    Deng J; Wang M; Song X; Yang Z; Yuan Z
    Nanomaterials (Basel); 2018 Apr; 8(4):. PubMed ID: 29673225
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Increased power conversion efficiency of dye-sensitized solar cells with counter electrodes based on carbon materials.
    Zhang S; Jin J; Li D; Fu Z; Gao S; Cheng S; Yu X; Xiong Y
    RSC Adv; 2019 Jul; 9(38):22092-22100. PubMed ID: 35518900
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Exploiting nanocarbons in dye-sensitized solar cells.
    Kavan L
    Top Curr Chem; 2014; 348():53-93. PubMed ID: 23729170
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Rapid atmospheric pressure plasma jet processed reduced graphene oxide counter electrodes for dye-sensitized solar cells.
    Liu HW; Liang SP; Wu TJ; Chang H; Kao PK; Hsu CC; Chen JZ; Chou PT; Cheng IC
    ACS Appl Mater Interfaces; 2014 Sep; 6(17):15105-12. PubMed ID: 25127290
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Starburst triarylamine based dyes for efficient dye-sensitized solar cells.
    Ning Z; Zhang Q; Wu W; Pei H; Liu B; Tian H
    J Org Chem; 2008 May; 73(10):3791-7. PubMed ID: 18412319
    [TBL] [Abstract][Full Text] [Related]  

  • 91. A sulfide/polysulfide-based ionic liquid electrolyte for quantum dot-sensitized solar cells.
    Jovanovski V; González-Pedro V; Giménez S; Azaceta E; Cabañero G; Grande H; Tena-Zaera R; Mora-Seró I; Bisquert J
    J Am Chem Soc; 2011 Dec; 133(50):20156-9. PubMed ID: 22107441
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells.
    Kuang D; Brillet J; Chen P; Takata M; Uchida S; Miura H; Sumioka K; Zakeeruddin SM; Grätzel M
    ACS Nano; 2008 Jun; 2(6):1113-6. PubMed ID: 19206327
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Large area growth of MoTe
    Hussain S; Patil SA; Vikraman D; Mengal N; Liu H; Song W; An KS; Jeong SH; Kim HS; Jung J
    Sci Rep; 2018 Jan; 8(1):29. PubMed ID: 29311582
    [TBL] [Abstract][Full Text] [Related]  

  • 94. High performance low temperature carbon composite catalysts for flexible dye sensitized solar cells.
    Hashmi SG; Halme J; Saukkonen T; Rautama EL; Lund P
    Phys Chem Chem Phys; 2013 Oct; 15(40):17689-95. PubMed ID: 24042582
    [TBL] [Abstract][Full Text] [Related]  

  • 95. MoS
    Subbiah V; Landi G; Wu JJ; Anandan S
    Phys Chem Chem Phys; 2019 Dec; 21(45):25474-25483. PubMed ID: 31714567
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Surfactant Effect in Polypyrrole and Polypyrrole with Multi Wall Carbon Nanotube Counter Electrodes: Improved Power Conversion Efficiency of Dye-Sensitized Solar Cell.
    Thuy CT; Park JY; Lee SW; Suresh T; Kim JH
    J Nanosci Nanotechnol; 2016 May; 16(5):5263-7. PubMed ID: 27483912
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Quasi-solid-state dye-sensitized solar cells with polymer gel electrolyte and triphenylamine-based organic dyes.
    Shi J; Peng S; Pei J; Liang Y; Cheng F; Chen J
    ACS Appl Mater Interfaces; 2009 Apr; 1(4):944-50. PubMed ID: 20356021
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Synergetic Effects of Hybrid Carbon Nanostructured Counter Electrodes for Dye-Sensitized Solar Cells: A Review.
    Samantaray MR; Mondal AK; Murugadoss G; Pitchaimuthu S; Das S; Bahru R; Mohamed MA
    Materials (Basel); 2020 Jun; 13(12):. PubMed ID: 32575516
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Carbon nanotube counter electrode for high-efficient fibrous dye-sensitized solar cells.
    Huang S; Sun H; Huang X; Zhang Q; Li D; Luo Y; Meng Q
    Nanoscale Res Lett; 2012 Apr; 7(1):222. PubMed ID: 22507398
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Low-cost counter electrodes from CoPt alloys for efficient dye-sensitized solar cells.
    He B; Meng X; Tang Q
    ACS Appl Mater Interfaces; 2014 Apr; 6(7):4812-8. PubMed ID: 24611765
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.