These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
567 related articles for article (PubMed ID: 20355905)
1. Efficient green solar cells via a chemically polymerizable donor-acceptor heterocyclic pentamer. Subbiah J; Beaujuge PM; Choudhury KR; Ellinger S; Reynolds JR; So F ACS Appl Mater Interfaces; 2009 Jun; 1(6):1154-8. PubMed ID: 20355905 [TBL] [Abstract][Full Text] [Related]
2. A weak donor-strong acceptor strategy to design ideal polymers for organic solar cells. Zhou H; Yang L; Stoneking S; You W ACS Appl Mater Interfaces; 2010 May; 2(5):1377-83. PubMed ID: 20438089 [TBL] [Abstract][Full Text] [Related]
3. A strategic buffer layer of polythiophene enhances the efficiency of bulk heterojunction solar cells. Wei HY; Huang JH; Ho KC; Chu CW ACS Appl Mater Interfaces; 2010 May; 2(5):1281-5. PubMed ID: 20450193 [TBL] [Abstract][Full Text] [Related]
4. Diketopyrrolopyrrole-based π-bridged donor-acceptor polymer for photovoltaic applications. Li W; Lee T; Oh SJ; Kagan CR ACS Appl Mater Interfaces; 2011 Oct; 3(10):3874-83. PubMed ID: 21888419 [TBL] [Abstract][Full Text] [Related]
6. Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells. Li SS; Tu KH; Lin CC; Chen CW; Chhowalla M ACS Nano; 2010 Jun; 4(6):3169-74. PubMed ID: 20481512 [TBL] [Abstract][Full Text] [Related]
8. Efficient bulk heterojunction solar cells with poly[2,7-(9,9-dihexylfluorene)-alt-bithiophene] and 6,6-phenyl C61 butyric acid methyl ester blends and their application in tandem cells. Zhao D; Tang W; Ke L; Tan ST; Sun XW ACS Appl Mater Interfaces; 2010 Mar; 2(3):829-37. PubMed ID: 20356288 [TBL] [Abstract][Full Text] [Related]
9. Indene-C(60) bisadduct: a new acceptor for high-performance polymer solar cells. He Y; Chen HY; Hou J; Li Y J Am Chem Soc; 2010 Feb; 132(4):1377-82. PubMed ID: 20055460 [TBL] [Abstract][Full Text] [Related]
10. Effect of the incorporation of a low-band-gap small molecule in a conjugated vinylene copolymer: PCBM blend for organic photovoltaic devices. Suresh P; Balraju P; Sharma GD; Mikroyannidis JA; Stylianakis MM ACS Appl Mater Interfaces; 2009 Jul; 1(7):1370-4. PubMed ID: 20355936 [TBL] [Abstract][Full Text] [Related]
11. Structure-property relationships of small bandgap conjugated polymers for solar cells. Hellström S; Zhang F; Inganäs O; Andersson MR Dalton Trans; 2009 Dec; (45):10032-9. PubMed ID: 19904430 [TBL] [Abstract][Full Text] [Related]
12. Ternary donor-insulator-acceptor systems for polymer solar cells. Li S; Lu G; Li H; Qu Y; Li L; Loos J; Yang X Macromol Rapid Commun; 2012 Nov; 33(21):1882-7. PubMed ID: 23059957 [TBL] [Abstract][Full Text] [Related]
13. Nanofibrillar self-organization of regioregular poly(3-hexylthiophene) and [6,6]-phenyl C(61)-butyric acid methyl ester by dip-coating: a simple method to obtain efficient bulk heterojunction solar cells. Valentini L; Bagnis D; Kenny JM Nanotechnology; 2009 Mar; 20(9):095603. PubMed ID: 19417494 [TBL] [Abstract][Full Text] [Related]
14. Low-band-gap platinum acetylide polymers as active materials for organic solar cells. Mei J; Ogawa K; Kim YG; Heston NC; Arenas DJ; Nasrollahi Z; McCarley TD; Tanner DB; Reynolds JR; Schanze KS ACS Appl Mater Interfaces; 2009 Jan; 1(1):150-61. PubMed ID: 20355767 [TBL] [Abstract][Full Text] [Related]
16. Synthesis of diketopyrrolopyrrole containing copolymers: a study of their optical and photovoltaic properties. Kanimozhi C; Balraju P; Sharma GD; Patil S J Phys Chem B; 2010 Mar; 114(9):3095-103. PubMed ID: 20158235 [TBL] [Abstract][Full Text] [Related]
17. Donor-acceptor alternating copolymers as donor materials for bulk-heterojunction solar cells: effects of molecular structure on film morphology and device performance. Xue L; Li Y; Dong F; Tian W Nanotechnology; 2010 Apr; 21(15):155201. PubMed ID: 20299728 [TBL] [Abstract][Full Text] [Related]
18. Platinum(II)-bis(aryleneethynylene) complexes for solution-processible molecular bulk heterojunction solar cells. Dai FR; Zhan HM; Liu Q; Fu YY; Li JH; Wang QW; Xie Z; Wang L; Yan F; Wong WY Chemistry; 2012 Jan; 18(5):1502-11. PubMed ID: 22213333 [TBL] [Abstract][Full Text] [Related]
19. Triphenylamine-thienylenevinylene hybrid systems with internal charge transfer as donor materials for heterojunction solar cells. Roquet S; Cravino A; Leriche P; Alévêque O; Frère P; Roncali J J Am Chem Soc; 2006 Mar; 128(10):3459-66. PubMed ID: 16522126 [TBL] [Abstract][Full Text] [Related]
20. Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption. Li Y Acc Chem Res; 2012 May; 45(5):723-33. PubMed ID: 22288572 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]