These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 20355996)

  • 1. Carbon nanotube-MoS2 composites as solid lubricants.
    Zhang X; Luster B; Church A; Muratore C; Voevodin AA; Kohli P; Aouadi S; Talapatra S
    ACS Appl Mater Interfaces; 2009 Mar; 1(3):735-9. PubMed ID: 20355996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thin films of fullerene-like MoS2 nanoparticles with ultra-low friction and wear.
    Chhowalla M; Amaratunga GA
    Nature; 2000 Sep; 407(6801):164-7. PubMed ID: 11001049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tribological Properties of Molybdenum Disulfide and Helical Carbon Nanotube Modified Epoxy Resin.
    Ren Z; Yang Y; Lin Y; Guo Z
    Materials (Basel); 2019 Mar; 12(6):. PubMed ID: 30889884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal-modified and vertically aligned carbon nanotube sensors array for landfill gas monitoring applications.
    Penza M; Rossi R; Alvisi M; Serra E
    Nanotechnology; 2010 Mar; 21(10):105501. PubMed ID: 20154374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of water in modifying friction within MoS2 sliding interfaces.
    Zhao X; Perry SS
    ACS Appl Mater Interfaces; 2010 May; 2(5):1444-8. PubMed ID: 20415448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Friction Force Microscopy Analysis of Self-Adaptive W-S-C Coatings: Nanoscale Friction and Wear.
    Zekonyte J; Polcar T
    ACS Appl Mater Interfaces; 2015 Sep; 7(38):21056-64. PubMed ID: 26340161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lamellar lubrication in vivo and vitro: friction testing of hexagonal boron nitride.
    Pawlak Z; Pai R; Bayraktar E; Kaldonski T; Oloyede A
    Biosystems; 2008 Dec; 94(3):202-8. PubMed ID: 18721855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low biofouling chitosan-hyaluronic acid multilayers with ultra-low friction coefficients.
    Bongaerts JH; Cooper-White JJ; Stokes JR
    Biomacromolecules; 2009 May; 10(5):1287-94. PubMed ID: 19351157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and reinforcement: vertically aligned carbon nanotube-based sandwich composites.
    Zeng Y; Ci L; Carey BJ; Vajtai R; Ajayan PM
    ACS Nano; 2010 Nov; 4(11):6798-804. PubMed ID: 20958076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Humidity effects on anisotropic nanofriction behaviors of aligned carbon nanotube carpets.
    Zhang J; Lu H; Sun Y; Ci L; Ajayan PM; Lou J
    ACS Appl Mater Interfaces; 2013 Oct; 5(19):9501-7. PubMed ID: 24004024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design, characterization and testing of Ti-based multicomponent coatings for load-bearing medical applications.
    Shtansky DV; Gloushankova NA; Sheveiko AN; Kharitonova MA; Moizhess TG; Levashov EA; Rossi F
    Biomaterials; 2005 Jun; 26(16):2909-24. PubMed ID: 15603786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tribological investigation of novel HDPE-HAp-Al2O3 hybrid biocomposites against steel under dry and simulated body fluid condition.
    Nath S; Bodhak S; Basu B
    J Biomed Mater Res A; 2007 Oct; 83(1):191-208. PubMed ID: 17397040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrowetting of aligned carbon nanotube films.
    Zhu L; Xu J; Xiu Y; Sun Y; Hess DW; Wong CP
    J Phys Chem B; 2006 Aug; 110(32):15945-50. PubMed ID: 16898749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The fabrication of carbon-nanotube-coated electrodes and a field-emission-based luminescent device.
    Agarwal S; Yamini Sarada B; Kar KK
    Nanotechnology; 2010 Feb; 21(6):065601. PubMed ID: 20057034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Friction and wear properties of novel HDPE--HAp--Al2O3 biocomposites against alumina counterface.
    Bodhak S; Nath S; Basu B
    J Biomater Appl; 2009 Mar; 23(5):407-33. PubMed ID: 18667457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tribological Properties of Cu-MoS
    Piasecki A; Kotkowiak M; Tulinski M; Čep R
    Materials (Basel); 2022 Nov; 15(23):. PubMed ID: 36499920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deposition, characterization, and tribological applications of near-frictionless carbon films on glass and ceramic substrates.
    Eryilmaz OL; Johnson JA; Ajayi OO; Erdemir A
    J Phys Condens Matter; 2006 Aug; 18(32):S1751-62. PubMed ID: 21690862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cluster-support interactions and morphology of MoS2 nanoclusters in a graphite-supported hydrotreating model catalyst.
    Kibsgaard J; Lauritsen JV; Laegsgaard E; Clausen BS; Topsøe H; Besenbacher F
    J Am Chem Soc; 2006 Oct; 128(42):13950-8. PubMed ID: 17044723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and tribological properties of multi-layer graphene/silicon dioxide composites-based solid lubricant coatings at elevated temperatures.
    Wang W; Chang W; Ding S; Qu Y; Gao Y; Wang K
    R Soc Open Sci; 2023 Feb; 10(2):220740. PubMed ID: 36778960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tribological behavior of plasma-sprayed carbon nanotube-reinforced hydroxyapatite coating in physiological solution.
    Balani K; Chen Y; Harimkar SP; Dahotre NB; Agarwal A
    Acta Biomater; 2007 Nov; 3(6):944-51. PubMed ID: 17646138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.