BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 20356038)

  • 1. How active-site protonation state influences the reactivity and ligation of the heme in chlorite dismutase.
    Streit BR; Blanc B; Lukat-Rodgers GS; Rodgers KR; DuBois JL
    J Am Chem Soc; 2010 Apr; 132(16):5711-24. PubMed ID: 20356038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding how the distal environment directs reactivity in chlorite dismutase: spectroscopy and reactivity of Arg183 mutants.
    Blanc B; Mayfield JA; McDonald CA; Lukat-Rodgers GS; Rodgers KR; DuBois JL
    Biochemistry; 2012 Mar; 51(9):1895-910. PubMed ID: 22313119
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural features promoting dioxygen production by Dechloromonas aromatica chlorite dismutase.
    Goblirsch BR; Streit BR; Dubois JL; Wilmot CM
    J Biol Inorg Chem; 2010 Aug; 15(6):879-88. PubMed ID: 20386942
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectroscopic characterization and ligand-binding properties of chlorite dismutase from the chlorate respiring bacterial strain GR-1.
    Hagedoorn PL; De Geus DC; Hagen WR
    Eur J Biochem; 2002 Oct; 269(19):4905-11. PubMed ID: 12354122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Versatility of heme coordination demonstrated in a fungal peroxidase. Absorption and resonance Raman studies of Coprinus cinereus peroxidase and the Asp245-->Asn mutant at various pH values.
    Smulevich G; Neri F; Marzocchi MP; Welinder KG
    Biochemistry; 1996 Aug; 35(32):10576-85. PubMed ID: 8756714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformational change and histidine control of heme chemistry in cytochrome c peroxidase: resonance Raman evidence from Leu-52 and Gly-181 mutants of cytochrome c peroxidase.
    Smulevich G; Miller MA; Kraut J; Spiro TG
    Biochemistry; 1991 Oct; 30(39):9546-58. PubMed ID: 1654102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unexpected photosensitivity of the well-characterized heme enzyme chlorite dismutase.
    Mahor D; Püschmann J; Adema DR; Strampraad MJF; Hagedoorn PL
    J Biol Inorg Chem; 2020 Dec; 25(8):1129-1138. PubMed ID: 33113038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and reactivity of chlorite dismutase nitrosyls.
    Geeraerts Z; Heskin AK; DuBois J; Rodgers KR; Lukat-Rodgers GS
    J Inorg Biochem; 2020 Oct; 211():111203. PubMed ID: 32768737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutation of distal residues of horseradish peroxidase: influence on substrate binding and cavity properties.
    Howes BD; Rodriguez-Lopez JN; Smith AT; Smulevich G
    Biochemistry; 1997 Feb; 36(6):1532-43. PubMed ID: 9063902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis for ligand discrimination and response initiation in the heme-based oxygen sensor FixL.
    Rodgers KR; Lukat-Rodgers GS; Barron JA
    Biochemistry; 1996 Jul; 35(29):9539-48. PubMed ID: 8755735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Active Sites of O
    Geeraerts Z; Rodgers KR; DuBois JL; Lukat-Rodgers GS
    Biochemistry; 2017 Aug; 56(34):4509-4524. PubMed ID: 28758386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A traffic light enzyme: acetate binding reversibly switches chlorite dismutase from a red- to a green-colored heme protein.
    Mahor D; Püschmann J; van den Haak M; Kooij PJ; van den Ouden DLJ; Strampraad MJF; Srour B; Hagedoorn PL
    J Biol Inorg Chem; 2020 Jun; 25(4):609-620. PubMed ID: 32246282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding the roles of strictly conserved tryptophan residues in O2 producing chlorite dismutases.
    Blanc B; Rodgers KR; Lukat-Rodgers GS; DuBois JL
    Dalton Trans; 2013 Mar; 42(9):3156-69. PubMed ID: 23241559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of the proximal ligand His-20 in heme oxygenase (Hmu O) from Corynebacterium diphtheriae. Oxidative cleavage of the heme macrocycle does not require the proximal histidine.
    Wilks A; Moënne-Loccoz P
    J Biol Chem; 2000 Apr; 275(16):11686-92. PubMed ID: 10766788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational Insights into the Catalysis of the pH Dependence of Bromite Decomposition Catalyzed by Chlorite Dismutase from
    Zhang X; Liu Y
    Inorg Chem; 2024 Apr; 63(15):6776-6786. PubMed ID: 38572830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectroscopic studies of Pyrococcus furiosus superoxide reductase: implications for active-site structures and the catalytic mechanism.
    Clay MD; Jenney FE; Hagedoorn PL; George GN; Adams MW; Johnson MK
    J Am Chem Soc; 2002 Feb; 124(5):788-805. PubMed ID: 11817955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A dominant homolytic O-Cl bond cleavage with low-spin triplet-state Fe(IV)=O formed is revealed in the mechanism of heme-dependent chlorite dismutase.
    Sun S; Li ZS; Chen SL
    Dalton Trans; 2014 Jan; 43(3):973-81. PubMed ID: 24162174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peroxidase-type reactions suggest a heterolytic/nucleophilic O-O joining mechanism in the heme-dependent chlorite dismutase.
    Mayfield JA; Blanc B; Rodgers KR; Lukat-Rodgers GS; DuBois JL
    Biochemistry; 2013 Oct; 52(40):6982-94. PubMed ID: 24001266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of and exquisite selectivity for O-O bond formation by the heme-dependent chlorite dismutase.
    Lee AQ; Streit BR; Zdilla MJ; Abu-Omar MM; DuBois JL
    Proc Natl Acad Sci U S A; 2008 Oct; 105(41):15654-9. PubMed ID: 18840691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinguishing Active Site Characteristics of Chlorite Dismutases with Their Cyanide Complexes.
    Geeraerts Z; Celis AI; Mayfield JA; Lorenz M; Rodgers KR; DuBois JL; Lukat-Rodgers GS
    Biochemistry; 2018 Mar; 57(9):1501-1516. PubMed ID: 29406727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.