These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 20356060)

  • 1. Microfluidic mixing and the formation of nanoscale lipid vesicles.
    Jahn A; Stavis SM; Hong JS; Vreeland WN; DeVoe DL; Gaitan M
    ACS Nano; 2010 Apr; 4(4):2077-87. PubMed ID: 20356060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic directed formation of liposomes of controlled size.
    Jahn A; Vreeland WN; DeVoe DL; Locascio LE; Gaitan M
    Langmuir; 2007 May; 23(11):6289-93. PubMed ID: 17451256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic directed self-assembly of liposome-hydrogel hybrid nanoparticles.
    Hong JS; Stavis SM; DePaoli Lacerda SH; Locascio LE; Raghavan SR; Gaitan M
    Langmuir; 2010 Jul; 26(13):11581-8. PubMed ID: 20429539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlled vesicle self-assembly in microfluidic channels with hydrodynamic focusing.
    Jahn A; Vreeland WN; Gaitan M; Locascio LE
    J Am Chem Soc; 2004 Mar; 126(9):2674-5. PubMed ID: 14995164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Freezing continuous-flow self-assembly in a microfluidic device: toward imaging of liposome formation.
    Jahn A; Lucas F; Wepf RA; Dittrich PS
    Langmuir; 2013 Feb; 29(5):1717-23. PubMed ID: 23289615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A facile route to the synthesis of monodisperse nanoscale liposomes using 3D microfluidic hydrodynamic focusing in a concentric capillary array.
    Hood RR; DeVoe DL; Atencia J; Vreeland WN; Omiatek DM
    Lab Chip; 2014 Jul; 14(14):2403-9. PubMed ID: 24825622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accurate optical analysis of single-molecule entrapment in nanoscale vesicles.
    Reiner JE; Jahn A; Stavis SM; Culbertson MJ; Vreeland WN; Burden DL; Geist J; Gaitan M
    Anal Chem; 2010 Jan; 82(1):180-8. PubMed ID: 19950933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of micro-mixing on the size of liposomes self-assembled from miscible liquid phases.
    Phapal SM; Sunthar P
    Chem Phys Lipids; 2013; 172-173():20-30. PubMed ID: 23669147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using bioinspired thermally triggered liposomes for high-efficiency mixing and reagent delivery in microfluidic devices.
    Vreeland WN; Locascio LE
    Anal Chem; 2003 Dec; 75(24):6906-11. PubMed ID: 14670052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlled self-assembly of monodisperse niosomes by microfluidic hydrodynamic focusing.
    Lo CT; Jahn A; Locascio LE; Vreeland WN
    Langmuir; 2010 Jun; 26(11):8559-66. PubMed ID: 20146467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alternating droplet generation and controlled dynamic droplet fusion in microfluidic device for CdS nanoparticle synthesis.
    Hung LH; Choi KM; Tseng WY; Tan YC; Shea KJ; Lee AP
    Lab Chip; 2006 Feb; 6(2):174-8. PubMed ID: 16450024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A microfluidic diffusion chamber for reversible environmental changes around flaccid lipid vesicles.
    Vrhovec S; Mally M; Kavčič B; Derganc J
    Lab Chip; 2011 Dec; 11(24):4200-6. PubMed ID: 22033516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic devices for continuous production of pDNA/cationic liposome complexes for gene delivery and vaccine therapy.
    Balbino TA; Azzoni AR; de la Torre LG
    Colloids Surf B Biointerfaces; 2013 Nov; 111():203-10. PubMed ID: 23811421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of hydrodynamic focusing in a microfluidic coulter counter device.
    Zhang M; Lian Y; Harnett C; Brehob E
    J Biomech Eng; 2012 Aug; 134(8):081001. PubMed ID: 22938354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of monodisperse block copolymer vesicles via flow focusing in microfluidics.
    Thiele J; Steinhauser D; Pfohl T; Förster S
    Langmuir; 2010 May; 26(9):6860-3. PubMed ID: 20121049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biopolymer microparticle and nanoparticle formation within a microfluidic device.
    Rondeau E; Cooper-White JJ
    Langmuir; 2008 Jun; 24(13):6937-45. PubMed ID: 18510374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic vortex focusing for high throughput synthesis of size-tunable liposomes.
    Han JY; La Fiandra JN; DeVoe DL
    Nat Commun; 2022 Nov; 13(1):6997. PubMed ID: 36384946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing.
    Mao X; Lin SC; Dong C; Huang TJ
    Lab Chip; 2009 Jun; 9(11):1583-9. PubMed ID: 19458866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A microfluidic vesicle screening platform: monitoring the lipid membrane permeability of tetracyclines.
    Kuhn P; Eyer K; Allner S; Lombardi D; Dittrich PS
    Anal Chem; 2011 Dec; 83(23):8877-85. PubMed ID: 22010628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-throughput continuous production of liposomes using hydrodynamic flow-focusing microfluidic devices.
    Michelon M; Oliveira DRB; de Figueiredo Furtado G; Gaziola de la Torre L; Cunha RL
    Colloids Surf B Biointerfaces; 2017 Aug; 156():349-357. PubMed ID: 28549322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.