These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
323 related articles for article (PubMed ID: 20356197)
1. Transparent, well-aligned TiO(2) nanotube arrays with controllable dimensions on glass substrates for photocatalytic applications. Tan LK; Kumar MK; An WW; Gao H ACS Appl Mater Interfaces; 2010 Feb; 2(2):498-503. PubMed ID: 20356197 [TBL] [Abstract][Full Text] [Related]
2. Fabrication of PbS nanoparticle-sensitized TiO₂ nanotube arrays and their photoelectrochemical properties. Kang Q; Liu S; Yang L; Cai Q; Grimes CA ACS Appl Mater Interfaces; 2011 Mar; 3(3):746-9. PubMed ID: 21306125 [TBL] [Abstract][Full Text] [Related]
3. Ultrasound aided photochemical synthesis of Ag loaded TiO2 nanotube arrays to enhance photocatalytic activity. Sun L; Li J; Wang C; Li S; Lai Y; Chen H; Lin C J Hazard Mater; 2009 Nov; 171(1-3):1045-50. PubMed ID: 19632043 [TBL] [Abstract][Full Text] [Related]
4. Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells. Kuang D; Brillet J; Chen P; Takata M; Uchida S; Miura H; Sumioka K; Zakeeruddin SM; Grätzel M ACS Nano; 2008 Jun; 2(6):1113-6. PubMed ID: 19206327 [TBL] [Abstract][Full Text] [Related]
5. Self-organized nitrogen and fluorine co-doped titanium oxide nanotube arrays with enhanced visible light photocatalytic performance. Li Q; Shang JK Environ Sci Technol; 2009 Dec; 43(23):8923-9. PubMed ID: 19943667 [TBL] [Abstract][Full Text] [Related]
6. Composite photocatalyst of nitrogen and fluorine codoped titanium oxide nanotube arrays with dispersed palladium oxide nanoparticles for enhanced visible light photocatalytic performance. Li Q; Shang JK Environ Sci Technol; 2010 May; 44(9):3493-9. PubMed ID: 20387812 [TBL] [Abstract][Full Text] [Related]
7. Self-organized TiO2 nanorod arrays on glass substrate for self-cleaning antireflection coatings. Mu Q; Li Y; Wang H; Zhang Q J Colloid Interface Sci; 2012 Jan; 365(1):308-13. PubMed ID: 21974921 [TBL] [Abstract][Full Text] [Related]
8. Highly flexible coaxial nanohybrids made from porous TiO2 nanotubes. Wang D; Liu Y; Wang C; Zhou F; Liu W ACS Nano; 2009 May; 3(5):1249-57. PubMed ID: 19413294 [TBL] [Abstract][Full Text] [Related]
9. Fabrication of highly ordered TiO2 nanorod/nanotube adjacent arrays for photoelectrochemical applications. Zhang H; Liu P; Liu X; Zhang S; Yao X; An T; Amal R; Zhao H Langmuir; 2010 Jul; 26(13):11226-32. PubMed ID: 20384304 [TBL] [Abstract][Full Text] [Related]
10. Photocatalysis using GaN nanowires. Jung HS; Hong YJ; Li Y; Cho J; Kim YJ; Yi GC ACS Nano; 2008 Apr; 2(4):637-42. PubMed ID: 19206593 [TBL] [Abstract][Full Text] [Related]
11. Self-organized TiO2 nanotube layers as highly efficient photocatalysts. Macak JM; Zlamal M; Krysa J; Schmuki P Small; 2007 Feb; 3(2):300-4. PubMed ID: 17230591 [No Abstract] [Full Text] [Related]
12. Effects of dissolved oxygen, pH, and anions on the 2,3-dichlorophenol degradation by photocatalytic reaction with anodic TiO(2) nanotube films. Liang HC; Li XZ; Yang YH; Sze KH Chemosphere; 2008 Oct; 73(5):805-12. PubMed ID: 18640697 [TBL] [Abstract][Full Text] [Related]
13. Preparation of photocatalytic anatase nanowire films by in situ oxidation of titanium plate. Wu Y; Long M; Cai W; Dai S; Chen C; Wu D; Bai J Nanotechnology; 2009 May; 20(18):185703. PubMed ID: 19420626 [TBL] [Abstract][Full Text] [Related]
14. Effects of TiO(2) nanotube array dimension and annealing temperature on the Acid Red 4 degradation in aqueous solution by photocatalytic process. Ku Y; Fan ZR; Chou YC; Wang WY Water Sci Technol; 2010; 61(11):2943-9. PubMed ID: 20489268 [TBL] [Abstract][Full Text] [Related]
15. Effects of structure of anodic TiO(2) nanotube arrays on photocatalytic activity for the degradation of 2,3-dichlorophenol in aqueous solution. Liang HC; Li XZ J Hazard Mater; 2009 Mar; 162(2-3):1415-22. PubMed ID: 18639980 [TBL] [Abstract][Full Text] [Related]
16. Use of highly-ordered TiO(2) nanotube arrays in dye-sensitized solar cells. Mor GK; Shankar K; Paulose M; Varghese OK; Grimes CA Nano Lett; 2006 Feb; 6(2):215-8. PubMed ID: 16464037 [TBL] [Abstract][Full Text] [Related]
17. Photocatalytic activity for hydrogen evolution of electrospun TiO2 nanofibers. Chuangchote S; Jitputti J; Sagawa T; Yoshikawa S ACS Appl Mater Interfaces; 2009 May; 1(5):1140-3. PubMed ID: 20355902 [TBL] [Abstract][Full Text] [Related]
18. Coaxial heterogeneous structure of TiO2 nanotube arrays with CdS as a superthin coating synthesized via modified electrochemical atomic layer deposition. Zhu W; Liu X; Liu H; Tong D; Yang J; Peng J J Am Chem Soc; 2010 Sep; 132(36):12619-26. PubMed ID: 20536235 [TBL] [Abstract][Full Text] [Related]
19. Amphiphilic TiO2 nanotube arrays: an actively controllable drug delivery system. Song YY; Schmidt-Stein F; Bauer S; Schmuki P J Am Chem Soc; 2009 Apr; 131(12):4230-2. PubMed ID: 19317500 [TBL] [Abstract][Full Text] [Related]
20. Anodic growth of highly ordered TiO2 nanotube arrays to 134 microm in length. Paulose M; Shankar K; Yoriya S; Prakasam HE; Varghese OK; Mor GK; LaTempa TJ; Fitzgerald A; Grimes CA J Phys Chem B; 2006 Aug; 110(33):16179-84. PubMed ID: 16913737 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]