BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 20356255)

  • 1. A versatile biodegradable polymer with a thermo-reversible/irreversible transition.
    Tanimoto F; Kitamura Y; Ono T; Yoshizawa H
    ACS Appl Mater Interfaces; 2010 Mar; 2(3):606-10. PubMed ID: 20356255
    [No Abstract]   [Full Text] [Related]  

  • 2. A low-concentration hydrothermal synthesis of biocompatible ordered mesoporous carbon nanospheres with tunable and uniform size.
    Fang Y; Gu D; Zou Y; Wu Z; Li F; Che R; Deng Y; Tu B; Zhao D
    Angew Chem Int Ed Engl; 2010 Oct; 49(43):7987-91. PubMed ID: 20839199
    [No Abstract]   [Full Text] [Related]  

  • 3. Smart implant materials.
    Lendlein A; Kratz K; Kelch S
    Med Device Technol; 2005 Apr; 16(3):12-4. PubMed ID: 15871417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoparticles of biodegradable polymers for new-concept chemotherapy.
    Feng SS
    Expert Rev Med Devices; 2004 Sep; 1(1):115-25. PubMed ID: 16293015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase separation micromolding: a new generic approach for microstructuring various materials.
    Vogelaar L; Lammertink RG; Barsema JN; Nijdam W; Bolhuis-Versteeg LA; van Rijn CJ; Wessling M
    Small; 2005 Jun; 1(6):645-55. PubMed ID: 17193501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoporous templates and membranes formed by nanosphere lithography and aluminum anodization.
    Lipson AL; Comstock DJ; Hersam MC
    Small; 2009 Dec; 5(24):2807-11. PubMed ID: 19859942
    [No Abstract]   [Full Text] [Related]  

  • 7. Preparation and characterization of cationic chitosan-modified poly(D,L-lactide-co-glycolide) copolymer nanospheres as DNA carriers.
    Guan XP; Quan DP; Liao KR; Tao Wang ; Peng Xiang ; Mai KC
    J Biomater Appl; 2008 Jan; 22(4):353-71. PubMed ID: 17494965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase stability of a reversible supramolecular polymer solution mixed with nanospheres.
    Tuinier R
    J Phys Condens Matter; 2011 May; 23(19):194113. PubMed ID: 21525565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Size and temperature effects on poly(lactic-co-glycolic acid) degradation and microreservoir device performance.
    Grayson AC; Cima MJ; Langer R
    Biomaterials; 2005 May; 26(14):2137-45. PubMed ID: 15576189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodegradable in situ gel-forming controlled drug delivery system based on thermosensitive PCL-PEG-PCL hydrogel. Part 2: sol-gel-sol transition and drug delivery behavior.
    Gong C; Shi S; Wu L; Gou M; Yin Q; Guo Q; Dong P; Zhang F; Luo F; Zhao X; Wei Y; Qian Z
    Acta Biomater; 2009 Nov; 5(9):3358-70. PubMed ID: 19470411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlled assembly of poly(D,L-lactide-co-glycolide)/hydroxyapatite core-shell nanospheres under ultrasonic irradiation.
    Jevtić M; Radulović A; Ignjatović N; Mitrić M; Uskoković D
    Acta Biomater; 2009 Jan; 5(1):208-18. PubMed ID: 18753023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrophobically modified biodegradable poly(ethylene glycol) copolymers that form temperature-responsive Nanogels.
    Nagahama K; Hashizume M; Yamamoto H; Ouchi T; Ohya Y
    Langmuir; 2009 Sep; 25(17):9734-40. PubMed ID: 19705882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formulation and surface modification of poly(ester-anhydride) micro- and nanospheres.
    Pfeifer BA; Burdick JA; Langer R
    Biomaterials; 2005 Jan; 26(2):117-24. PubMed ID: 15207458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reverse thermo-responsive poly(ethylene oxide) and poly(propylene oxide) multiblock copolymers.
    Sosnik A; Cohn D
    Biomaterials; 2005 Feb; 26(4):349-57. PubMed ID: 15275809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Encapsulation of multiple biological compounds within a single electrospun fiber.
    Dong B; Smith ME; Wnek GE
    Small; 2009 Jul; 5(13):1508-12. PubMed ID: 19384883
    [No Abstract]   [Full Text] [Related]  

  • 16. Fabrication of size-controlled starch-based nanospheres by nanoprecipitation.
    Tan Y; Xu K; Li L; Liu C; Song C; Wang P
    ACS Appl Mater Interfaces; 2009 Apr; 1(4):956-9. PubMed ID: 20356023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of continuous flow nanosphere formation by controlled microfluidic transport.
    Laulicht B; Cheifetz P; Mathiowitz E; Tripathi A
    Langmuir; 2008 Sep; 24(17):9717-26. PubMed ID: 18681411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Raman imaging for quantification of the volume fraction of biodegradable polymers in histological preparations.
    Nandagawali ST; Yerramshetty JS; Akkus O
    J Biomed Mater Res A; 2007 Sep; 82(3):611-7. PubMed ID: 17315235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellular uptake, cytotoxicity, and ROS generation with silica/conducting polymer core/shell nanospheres.
    Jeong YS; Oh WK; Kim S; Jang J
    Biomaterials; 2011 Oct; 32(29):7217-25. PubMed ID: 21724253
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The influence of biodegradable polymer on bone and soft tissue].
    Liu J; Li D; Xu X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Apr; 21(2):321-4. PubMed ID: 15143568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.