These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 2035627)

  • 1. Energy metabolism in single human muscle fibers during contraction without and with epinephrine infusion.
    Greenhaff PL; Ren JM; Söderlund K; Hultman E
    Am J Physiol; 1991 May; 260(5 Pt 1):E713-8. PubMed ID: 2035627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epinephrine infusion enhances muscle glycogenolysis during prolonged electrical stimulation.
    Spriet LL; Ren JM; Hultman E
    J Appl Physiol (1985); 1988 Apr; 64(4):1439-44. PubMed ID: 3378979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High physiological levels of epinephrine do not enhance muscle glycogenolysis during tetanic stimulation.
    Chesley A; Dyck DJ; Spriet LL
    J Appl Physiol (1985); 1994 Aug; 77(2):956-62. PubMed ID: 8002553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy metabolism in type I and type II human muscle fibres during short term electrical stimulation at different frequencies.
    Söderlund K; Greenhaff PL; Hultman E
    Acta Physiol Scand; 1992 Jan; 144(1):15-22. PubMed ID: 1595349
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy metabolism in single human muscle fibres during intermittent contraction with occluded circulation.
    Greenhaff PL; Söderlund K; Ren JM; Hultman E
    J Physiol; 1993 Jan; 460():443-53. PubMed ID: 8487203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Muscle glycogenolysis during exercise: dual control by epinephrine and contractions.
    Richter EA; Ruderman NB; Gavras H; Belur ER; Galbo H
    Am J Physiol; 1982 Jan; 242(1):E25-32. PubMed ID: 7058885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Skeletal muscle metabolism, contraction force and glycogen utilization during prolonged electrical stimulation in humans.
    Hultman E; Spriet LL
    J Physiol; 1986 May; 374():493-501. PubMed ID: 3746702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of glycogenolysis in human skeletal muscle.
    Ren JM; Hultman E
    J Appl Physiol (1985); 1989 Dec; 67(6):2243-8. PubMed ID: 2606829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epinephrine infusion does not enhance net muscle glycogenolysis during prolonged aerobic exercise.
    Wendling PS; Peters SJ; Heigenhauser GJ; Spriet LL
    Can J Appl Physiol; 1996 Aug; 21(4):271-84. PubMed ID: 8853469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of epinephrine infusion on muscle glycogenolysis during intense aerobic exercise.
    Chesley A; Hultman E; Spriet LL
    Am J Physiol; 1995 Jan; 268(1 Pt 1):E127-34. PubMed ID: 7840170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of phosphorylase a activity in human skeletal muscle.
    Ren JM; Hultman E
    J Appl Physiol (1985); 1990 Sep; 69(3):919-23. PubMed ID: 2246179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ATP and phosphocreatine changes in single human muscle fibers after intense electrical stimulation.
    Söderlund K; Hultman E
    Am J Physiol; 1991 Dec; 261(6 Pt 1):E737-41. PubMed ID: 1767834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy metabolism and contraction force of human skeletal muscle in situ during electrical stimulation.
    Hultman E; Sjöholm H
    J Physiol; 1983 Dec; 345():525-32. PubMed ID: 6663511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of reduced glycogen level on glycogenolysis during short-term stimulation in man.
    Ren JM; Broberg S; Sahlin K; Hultman E
    Acta Physiol Scand; 1990 Jul; 139(3):467-74. PubMed ID: 2239350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bovine longissimus muscle glycogen concentration in response to isometric contraction and exogenous epinephrine.
    Crouse JD; Smith SB
    Am J Vet Res; 1986 Apr; 47(4):939-41. PubMed ID: 3963599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of adrenaline infusion on the regulation of glycogenolysis in human muscle during isometric contraction.
    Chasiotis D; Hultman E
    Acta Physiol Scand; 1985 Jan; 123(1):55-60. PubMed ID: 2982245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ATP utilization and force during intermittent and continuous muscle contractions.
    Chasiotis D; Bergström M; Hultman E
    J Appl Physiol (1985); 1987 Jul; 63(1):167-74. PubMed ID: 3624122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The metabolic responses of human type I and II muscle fibres during maximal treadmill sprinting.
    Greenhaff PL; Nevill ME; Soderlund K; Bodin K; Boobis LH; Williams C; Hultman E
    J Physiol; 1994 Jul; 478 ( Pt 1)(Pt 1):149-55. PubMed ID: 7965830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Muscle glycogenolysis and H+ concentration during maximal intermittent cycling.
    Spriet LL; Lindinger MI; McKelvie RS; Heigenhauser GJ; Jones NL
    J Appl Physiol (1985); 1989 Jan; 66(1):8-13. PubMed ID: 2917960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contraction-mediated glycogenolysis in mouse skeletal muscle lacking creatine kinase: the role of phosphorylase b activation.
    Katz A; Andersson DC; Yu J; Norman B; Sandstrom ME; Wieringa B; Westerblad H
    J Physiol; 2003 Dec; 553(Pt 2):523-31. PubMed ID: 12963789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.