These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 20356406)

  • 21. A global parallel model based design of experiments method to minimize model output uncertainty.
    Bazil JN; Buzzard GT; Rundell AE
    Bull Math Biol; 2012 Mar; 74(3):688-716. PubMed ID: 21989566
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Algebraic methods for inferring biochemical networks: a maximum likelihood approach.
    Craciun G; Pantea C; Rempala GA
    Comput Biol Chem; 2009 Oct; 33(5):361-7. PubMed ID: 19709932
    [TBL] [Abstract][Full Text] [Related]  

  • 23. iCFD: Interpreted Computational Fluid Dynamics - Degeneration of CFD to one-dimensional advection-dispersion models using statistical experimental design - The secondary clarifier.
    Guyonvarch E; Ramin E; Kulahci M; Plósz BG
    Water Res; 2015 Oct; 83():396-411. PubMed ID: 26248321
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Introduction: Cancer Gene Networks.
    Clarke R
    Methods Mol Biol; 2017; 1513():1-9. PubMed ID: 27807826
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optimal design of stimulus experiments for robust discrimination of biochemical reaction networks.
    Flassig RJ; Sundmacher K
    Bioinformatics; 2012 Dec; 28(23):3089-96. PubMed ID: 23047554
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Simplification of biochemical models: a general approach based on the analysis of the impact of individual species and reactions on the systems dynamics.
    Surovtsova I; Simus N; Hübner K; Sahle S; Kummer U
    BMC Syst Biol; 2012 Mar; 6():14. PubMed ID: 22390191
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A scalable method for parameter-free simulation and validation of mechanistic cellular signal transduction network models.
    Romers J; Thieme S; Münzner U; Krantz M
    NPJ Syst Biol Appl; 2020; 6():2. PubMed ID: 31934349
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Systematic methodology for the development of mathematical models for biological processes.
    Kontoravdi C
    Methods Mol Biol; 2013; 1073():177-90. PubMed ID: 23996448
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Extraction of elementary rate constants from global network analysis of E. coli central metabolism.
    Zhao J; Ridgway D; Broderick G; Kovalenko A; Ellison M
    BMC Syst Biol; 2008 May; 2():41. PubMed ID: 18462493
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Parameter identification, experimental design and model falsification for biological network models using semidefinite programming.
    Hasenauer J; Waldherr S; Wagner K; Allgöwer F
    IET Syst Biol; 2010 Mar; 4(2):119-30. PubMed ID: 20232992
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Near-optimal experimental design for model selection in systems biology.
    Busetto AG; Hauser A; Krummenacher G; Sunnåker M; Dimopoulos S; Ong CS; Stelling J; Buhmann JM
    Bioinformatics; 2013 Oct; 29(20):2625-32. PubMed ID: 23900189
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Properties of the proximate parameter tuning regularization algorithm.
    Brown M; He F; Wilkinson SJ
    Bull Math Biol; 2010 Apr; 72(3):697-718. PubMed ID: 20049545
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gene expression complex networks: synthesis, identification, and analysis.
    Lopes FM; Cesar RM; Costa Lda F
    J Comput Biol; 2011 Oct; 18(10):1353-67. PubMed ID: 21548810
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Parameter estimation in stochastic biochemical reactions.
    Reinker S; Altman RM; Timmer J
    Syst Biol (Stevenage); 2006 Jul; 153(4):168-78. PubMed ID: 16986618
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Agent-based re-engineering of ErbB signaling: a modeling pipeline for integrative systems biology.
    Das AA; Ajayakumar Darsana T; Jacob E
    Bioinformatics; 2017 Mar; 33(5):726-732. PubMed ID: 27998938
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mathematical formalisms based on approximated kinetic representations for modeling genetic and metabolic pathways.
    Alves R; Vilaprinyo E; Hernádez-Bermejo B; Sorribas A
    Biotechnol Genet Eng Rev; 2008; 25():1-40. PubMed ID: 21412348
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A structured approach for the engineering of biochemical network models, illustrated for signalling pathways.
    Breitling R; Gilbert D; Heiner M; Orton R
    Brief Bioinform; 2008 Sep; 9(5):404-21. PubMed ID: 18573813
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In Silico Evolution of Signaling Networks Using Rule-Based Models: Bistable Response Dynamics.
    Feng S; Soyer OS
    Methods Mol Biol; 2019; 1945():315-339. PubMed ID: 30945254
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimal experimental design with the sigma point method.
    Schenkendorf R; Kremling A; Mangold M
    IET Syst Biol; 2009 Jan; 3(1):10-23. PubMed ID: 19154081
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.