These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 20356633)

  • 61. Viral infection triggers rapid differentiation of human blood monocytes into dendritic cells.
    Hou W; Gibbs JS; Lu X; Brooke CB; Roy D; Modlin RL; Bennink JR; Yewdell JW
    Blood; 2012 Mar; 119(13):3128-31. PubMed ID: 22310910
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Viral Replication Assay in Bone Marrow-Derived Macrophages.
    Roback L; Daley-Bauer LP
    Methods Mol Biol; 2018; 1784():127-134. PubMed ID: 29761395
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A novel role for viral-defective interfering particles in enhancing dendritic cell maturation.
    Yount JS; Kraus TA; Horvath CM; Moran TM; López CB
    J Immunol; 2006 Oct; 177(7):4503-13. PubMed ID: 16982887
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Infection of monocytes or immature dendritic cells (DCs) with an attenuated rabies virus results in DC maturation and a strong activation of the NFkappaB signaling pathway.
    Li J; McGettigan JP; Faber M; Schnell MJ; Dietzschold B
    Vaccine; 2008 Jan; 26(3):419-26. PubMed ID: 18082293
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Increased Proinflammatory Responses of Monocytes and Plasmacytoid Dendritic Cells to Influenza A Virus Infection During Pregnancy.
    Le Gars M; Kay AW; Bayless NL; Aziz N; Dekker CL; Swan GE; Davis MM; Blish CA
    J Infect Dis; 2016 Dec; 214(11):1666-1671. PubMed ID: 27655870
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Dendritic cell development in infection.
    Bieber K; Autenrieth SE
    Mol Immunol; 2020 May; 121():111-117. PubMed ID: 32199210
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Quantitative RT-PCR Analysis of Influenza Virus Endocytic Escape.
    Su WC; Lai MMC
    Methods Mol Biol; 2018; 1836():185-194. PubMed ID: 30151574
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Monocytes and Macrophages as Viral Targets and Reservoirs.
    Nikitina E; Larionova I; Choinzonov E; Kzhyshkowska J
    Int J Mol Sci; 2018 Sep; 19(9):. PubMed ID: 30231586
    [TBL] [Abstract][Full Text] [Related]  

  • 69. [Lassa virus and myeloid dendritic cells: a privileged tropism for the suppression of the T lymphocyte response].
    Baize S
    Med Sci (Paris); 2019; 35(8-9):619-621. PubMed ID: 31532370
    [No Abstract]   [Full Text] [Related]  

  • 70. Influence of redox status of lymphocytes and monocytes on HIV transcription and replication.
    Gougerot-Pocidalo MA; Aillet F; Virelizier JL; Israël N
    Immunobiology; 1995 Jul; 193(2-4):204-9. PubMed ID: 8530144
    [No Abstract]   [Full Text] [Related]  

  • 71. Viral interleukin-10 expressed by human cytomegalovirus during the latent phase of infection modulates latently infected myeloid cell differentiation.
    Avdic S; Cao JZ; Cheung AK; Abendroth A; Slobedman B
    J Virol; 2011 Jul; 85(14):7465-71. PubMed ID: 21593144
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Antiviral response dictated by choreographed cascade of transcription factors.
    Zaslavsky E; Hershberg U; Seto J; Pham AM; Marquez S; Duke JL; Wetmur JG; Tenoever BR; Sealfon SC; Kleinstein SH
    J Immunol; 2010 Mar; 184(6):2908-17. PubMed ID: 20164420
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Monocytes, viruses and metaphors: hanging the Trojan horse.
    Yewdell JW; Brooke CB
    Cell Cycle; 2012 May; 11(9):1748-9. PubMed ID: 22517432
    [No Abstract]   [Full Text] [Related]  

  • 74. Immunophenotypic classification of leukemia in 3 horses.
    McClure JT; Young KM; Fiste M; Sharkey LC; Lunn DP
    J Vet Intern Med; 2001; 15(2):144-52. PubMed ID: 11300598
    [No Abstract]   [Full Text] [Related]  

  • 75. Growth characteristics of influenza virus; biochemical differentiation of stages of development. II.
    ACKERMANN WW; MAASSAB HF
    J Exp Med; 1955 Oct; 102(4):393-402. PubMed ID: 13263481
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Equine Arteritis Virus Has Specific Tropism for Stromal Cells and CD8
    Carossino M; Loynachan AT; Canisso IF; Cook RF; Campos JR; Nam B; Go YY; Squires EL; Troedsson MHT; Swerczek T; Del Piero F; Bailey E; Timoney PJ; Balasuriya UBR
    J Virol; 2017 Jul; 91(13):. PubMed ID: 28424285
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Differential response of porcine immature monocyte-derived dendritic cells to virulent and inactivated transmissible gastroenteritis virus.
    Zhao S; Gao Q; Lin J; Yan M; Yu Q; Yang Q
    Res Vet Sci; 2014 Dec; 97(3):623-30. PubMed ID: 25307113
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Evasion of influenza A viruses from innate and adaptive immune responses.
    van de Sandt CE; Kreijtz JH; Rimmelzwaan GF
    Viruses; 2012 Sep; 4(9):1438-76. PubMed ID: 23170167
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Rapid differentiation of monocytes into type I IFN-producing myeloid dendritic cells as an antiviral strategy against influenza virus infection.
    Cao W; Taylor AK; Biber RE; Davis WG; Kim JH; Reber AJ; Chirkova T; De La Cruz JA; Pandey A; Ranjan P; Katz JM; Gangappa S; Sambhara S
    J Immunol; 2012 Sep; 189(5):2257-65. PubMed ID: 22855715
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A new strategy of immune evasion by influenza A virus: inhibition of monocyte differentiation into dendritic cells.
    Boliar S; Chambers TM
    Vet Immunol Immunopathol; 2010 Aug; 136(3-4):201-10. PubMed ID: 20356633
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.