These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
260 related articles for article (PubMed ID: 20356952)
1. Plant Fe status affects the composition of siderophore-secreting microbes in the rhizosphere. Jin CW; Li GX; Yu XH; Zheng SJ Ann Bot; 2010 May; 105(5):835-41. PubMed ID: 20356952 [TBL] [Abstract][Full Text] [Related]
2. Mechanisms of microbially enhanced Fe acquisition in red clover (Trifolium pratense L.). Jin CW; He YF; Tang CX; Wu P; Zheng SJ Plant Cell Environ; 2006 May; 29(5):888-97. PubMed ID: 17087472 [TBL] [Abstract][Full Text] [Related]
3. Comparative Genomics, Siderophore Production, and Iron Scavenging Potential of Root Zone Soil Bacteria Isolated from 'Concord' Grape Vineyards. Lewis RW; Islam A; Opdahl L; Davenport JR; Sullivan TS Microb Ecol; 2019 Oct; 78(3):699-713. PubMed ID: 30770943 [TBL] [Abstract][Full Text] [Related]
4. Microbial siderophores and root exudates enhanced goethite dissolution and Fe/As uptake by As-hyperaccumulator Pteris vittata. Liu X; Fu JW; Da Silva E; Shi XX; Cao Y; Rathinasabapathi B; Chen Y; Ma LQ Environ Pollut; 2017 Apr; 223():230-237. PubMed ID: 28108165 [TBL] [Abstract][Full Text] [Related]
5. An underground tale: contribution of microbial activity to plant iron acquisition via ecological processes. Jin CW; Ye YQ; Zheng SJ Ann Bot; 2014 Jan; 113(1):7-18. PubMed ID: 24265348 [TBL] [Abstract][Full Text] [Related]
6. Siderophore production in pseudomonas SP. strain SP3 enhances iron acquisition in apple rootstock. Gao B; Chai X; Huang Y; Wang X; Han Z; Xu X; Wu T; Zhang X; Wang Y J Appl Microbiol; 2022 Aug; 133(2):720-732. PubMed ID: 35462451 [TBL] [Abstract][Full Text] [Related]
7. Increased iron-stress resilience of maize through inoculation of siderophore-producing Arthrobacter globiformis from mine. Sharma M; Mishra V; Rau N; Sharma RS J Basic Microbiol; 2016 Jul; 56(7):719-35. PubMed ID: 26632776 [TBL] [Abstract][Full Text] [Related]
8. Isolation and structural identification of the trihydroxamate siderophore vicibactin and its degradative products from Rhizobium leguminosarum ATCC 14479 bv. trifolii. Wright W; Little J; Liu F; Chakraborty R Biometals; 2013 Apr; 26(2):271-83. PubMed ID: 23361163 [TBL] [Abstract][Full Text] [Related]
9. High-throughput Siderophore Screening from Environmental Samples: Plant Tissues, Bulk Soils, and Rhizosphere Soils. Lewis RW; Islam AA; Dilla-Ermita CJ; Hulbert SH; Sullivan TS J Vis Exp; 2019 Feb; (144):. PubMed ID: 30799863 [TBL] [Abstract][Full Text] [Related]
10. Iron deficiency-induced secretion of phenolics facilitates the reutilization of root apoplastic iron in red clover. Jin CW; You GY; He YF; Tang C; Wu P; Zheng SJ Plant Physiol; 2007 May; 144(1):278-85. PubMed ID: 17369430 [TBL] [Abstract][Full Text] [Related]
11. Deciphering Trifolium pratense L. holobiont reveals a microbiome resilient to future climate changes. Wahdan SFM; Tanunchai B; Wu YT; Sansupa C; Schädler M; Dawoud TM; Buscot F; Purahong W Microbiologyopen; 2021 Aug; 10(4):e1217. PubMed ID: 34459547 [TBL] [Abstract][Full Text] [Related]
12. Synthesis of siderophores by plant-associated metallotolerant bacteria under exposure to Cd(2.). Złoch M; Thiem D; Gadzała-Kopciuch R; Hrynkiewicz K Chemosphere; 2016 Aug; 156():312-325. PubMed ID: 27183333 [TBL] [Abstract][Full Text] [Related]
13. Plant-microorganism-soil interactions influence the Fe availability in the rhizosphere of cucumber plants. Pii Y; Penn A; Terzano R; Crecchio C; Mimmo T; Cesco S Plant Physiol Biochem; 2015 Feb; 87():45-52. PubMed ID: 25544744 [TBL] [Abstract][Full Text] [Related]
14. Radiochemical Evidence for the Contribution of Chemotyped Siderophore Producing Bacteria Towards Plant Iron Nutrition. Abiraami TV; Suman A; Singh B; Aswini K; Annapurna K Curr Microbiol; 2021 Dec; 78(12):4072-4083. PubMed ID: 34559288 [TBL] [Abstract][Full Text] [Related]
15. Competition for iron drives phytopathogen control by natural rhizosphere microbiomes. Gu S; Wei Z; Shao Z; Friman VP; Cao K; Yang T; Kramer J; Wang X; Li M; Mei X; Xu Y; Shen Q; Kümmerli R; Jousset A Nat Microbiol; 2020 Aug; 5(8):1002-1010. PubMed ID: 32393858 [TBL] [Abstract][Full Text] [Related]
16. Involvement of Trichoderma asperellum strain T6 in regulating iron acquisition in plants. Zhao L; Wang F; Zhang Y; Zhang J J Basic Microbiol; 2014 Jul; 54 Suppl 1():S115-24. PubMed ID: 24861576 [TBL] [Abstract][Full Text] [Related]
17. Root endophytic bacteria of a (137)Cs and Mn accumulator plant, Eleutherococcus sciadophylloides, increase (137)Cs and Mn desorption in the soil. Yamaji K; Nagata S; Haruma T; Ohnuki T; Kozaki T; Watanabe N; Nanba K J Environ Radioact; 2016 Mar; 153():112-119. PubMed ID: 26760221 [TBL] [Abstract][Full Text] [Related]
18. Root exudation of phytosiderophores from soil-grown wheat. Oburger E; Gruber B; Schindlegger Y; Schenkeveld WDC; Hann S; Kraemer SM; Wenzel WW; Puschenreiter M New Phytol; 2014 Sep; 203(4):1161-1174. PubMed ID: 24890330 [TBL] [Abstract][Full Text] [Related]
19. Understanding the Mechanisms of Fe Deficiency in the Rhizosphere to Promote Plant Resilience. Molnár Z; Solomon W; Mutum L; Janda T Plants (Basel); 2023 May; 12(10):. PubMed ID: 37653862 [TBL] [Abstract][Full Text] [Related]
20. Paenibacillus polymyxa BFKC01 enhances plant iron absorption via improved root systems and activated iron acquisition mechanisms. Zhou C; Guo J; Zhu L; Xiao X; Xie Y; Zhu J; Ma Z; Wang J Plant Physiol Biochem; 2016 Aug; 105():162-173. PubMed ID: 27105423 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]