BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

357 related articles for article (PubMed ID: 20357124)

  • 1. Synaptic mechanism for functional synergism between delta- and mu-opioid receptors.
    Zhang Z; Pan ZZ
    J Neurosci; 2010 Mar; 30(13):4735-45. PubMed ID: 20357124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Signaling cascades for δ-opioid receptor-mediated inhibition of GABA synaptic transmission and behavioral antinociception.
    Zhang Z; Pan ZZ
    Mol Pharmacol; 2012 Mar; 81(3):375-83. PubMed ID: 22144670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rewarding morphine-induced synaptic function of delta-opioid receptors on central glutamate synapses.
    Bie B; Zhu W; Pan ZZ
    J Pharmacol Exp Ther; 2009 Apr; 329(1):290-6. PubMed ID: 19168708
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Histone deacetylase inhibitor-induced emergence of synaptic δ-opioid receptors and behavioral antinociception in persistent neuropathic pain.
    Tao W; Zhou W; Wang Y; Sun T; Wang H; Zhang Z; Jin Y
    Neuroscience; 2016 Dec; 339():54-63. PubMed ID: 27646288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. G protein-coupled receptor kinase 2 mediates mu-opioid receptor desensitization in GABAergic neurons of the nucleus raphe magnus.
    Li AH; Wang HL
    J Neurochem; 2001 Apr; 77(2):435-44. PubMed ID: 11299306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facilitation of μ-opioid receptor activity by preventing δ-opioid receptor-mediated codegradation.
    He SQ; Zhang ZN; Guan JS; Liu HR; Zhao B; Wang HB; Li Q; Yang H; Luo J; Li ZY; Wang Q; Lu YJ; Bao L; Zhang X
    Neuron; 2011 Jan; 69(1):120-31. PubMed ID: 21220103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuroadaptation of GABAergic transmission in the central amygdala during chronic morphine treatment.
    Bajo M; Roberto M; Madamba SG; Siggins GR
    Addict Biol; 2011 Oct; 16(4):551-64. PubMed ID: 21182569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased glutamate synaptic transmission in the nucleus raphe magnus neurons from morphine-tolerant rats.
    Bie B; Pan ZZ
    Mol Pain; 2005 Feb; 1():7. PubMed ID: 15813995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preferential cytoplasmic localization of delta-opioid receptors in rat striatal patches: comparison with plasmalemmal mu-opioid receptors.
    Wang H; Pickel VM
    J Neurosci; 2001 May; 21(9):3242-50. PubMed ID: 11312309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction and regulatory functions of μ- and δ-opioid receptors in nociceptive afferent neurons.
    Zhang X; Bao L
    Neurosci Bull; 2012 Apr; 28(2):121-30. PubMed ID: 22466123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mice Expressing Regulators of G protein Signaling-insensitive Gαo Define Roles of
    Bouchet CA; McPherson KB; Li MH; Traynor JR; Ingram SL
    Mol Pharmacol; 2021 Sep; 100(3):217-223. PubMed ID: 34135098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emergence of functional spinal delta opioid receptors after chronic ethanol exposure.
    van Rijn RM; Brissett DI; Whistler JL
    Biol Psychiatry; 2012 Feb; 71(3):232-8. PubMed ID: 21889123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mu-Opioids Suppress GABAergic Synaptic Transmission onto Orbitofrontal Cortex Pyramidal Neurons with Subregional Selectivity.
    Lau BK; Ambrose BP; Thomas CS; Qiao M; Borgland SL
    J Neurosci; 2020 Jul; 40(31):5894-5907. PubMed ID: 32601247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation of mu- and delta-opioid receptors causes presynaptic inhibition of glutamatergic excitation in neocortical neurons.
    Ostermeier AM; Schlösser B; Schwender D; Sutor B
    Anesthesiology; 2000 Oct; 93(4):1053-63. PubMed ID: 11020761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo characterization of MMP-2200, a mixed δ/μ opioid agonist, in mice.
    Lowery JJ; Raymond TJ; Giuvelis D; Bidlack JM; Polt R; Bilsky EJ
    J Pharmacol Exp Ther; 2011 Mar; 336(3):767-78. PubMed ID: 21118955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissociation of the opioid receptor mechanisms that control mechanical and heat pain.
    Scherrer G; Imamachi N; Cao YQ; Contet C; Mennicken F; O'Donnell D; Kieffer BL; Basbaum AI
    Cell; 2009 Jun; 137(6):1148-59. PubMed ID: 19524516
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Delta and mu enkephalins inhibit spontaneous GABA-mediated IPSCs via a cyclic AMP-independent mechanism in the rat hippocampus.
    Lupica CR
    J Neurosci; 1995 Jan; 15(1 Pt 2):737-49. PubMed ID: 7823176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. μ-Opioid receptors in primary sensory neurons are essential for opioid analgesic effect on acute and inflammatory pain and opioid-induced hyperalgesia.
    Sun J; Chen SR; Chen H; Pan HL
    J Physiol; 2019 Mar; 597(6):1661-1675. PubMed ID: 30578671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. cAMP-mediated mechanisms for pain sensitization during opioid withdrawal.
    Bie B; Peng Y; Zhang Y; Pan ZZ
    J Neurosci; 2005 Apr; 25(15):3824-32. PubMed ID: 15829634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contribution of brainstem GABA(A) synaptic transmission to morphine analgesic tolerance.
    Ma J; Pan ZZ
    Pain; 2006 May; 122(1-2):163-73. PubMed ID: 16527406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.