These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
826 related articles for article (PubMed ID: 20357344)
1. Phenotypic plasticity and local adaptation in leaf ecophysiological traits of 13 contrasting cork oak populations under different water availabilities. Ramírez-Valiente JA; Sánchez-Gómez D; Aranda I; Valladares F Tree Physiol; 2010 May; 30(5):618-27. PubMed ID: 20357344 [TBL] [Abstract][Full Text] [Related]
2. Elucidating the role of genetic drift and natural selection in cork oak differentiation regarding drought tolerance. Ramírez-Valiente JA; Lorenzo Z; Soto A; Valladares F; Gil L; Aranda I Mol Ecol; 2009 Sep; 18(18):3803-15. PubMed ID: 19732337 [TBL] [Abstract][Full Text] [Related]
3. Contrasting plant physiological adaptation to climate in the native and introduced range of Hypericum perforatum. Maron JL; Elmendorf SC; Vilà M Evolution; 2007 Aug; 61(8):1912-24. PubMed ID: 17683433 [TBL] [Abstract][Full Text] [Related]
4. To what extent is altitudinal variation of functional traits driven by genetic adaptation in European oak and beech? Bresson CC; Vitasse Y; Kremer A; Delzon S Tree Physiol; 2011 Nov; 31(11):1164-74. PubMed ID: 21908436 [TBL] [Abstract][Full Text] [Related]
5. Drought-induced photosynthetic inhibition and autumn recovery in two Mediterranean oak species (Quercus ilex and Quercus suber). Vaz M; Pereira JS; Gazarini LC; David TS; David JS; Rodrigues A; Maroco J; Chaves MM Tree Physiol; 2010 Aug; 30(8):946-56. PubMed ID: 20571151 [TBL] [Abstract][Full Text] [Related]
6. Genetic variation in carbon isotope discrimination in six European populations of Castanea sativa Mill. originating from contrasting localities. Lauteri M; Pliura A; Monteverdi MC; Brugnoli E; Villani F; Eriksson G J Evol Biol; 2004 Nov; 17(6):1286-96. PubMed ID: 15525413 [TBL] [Abstract][Full Text] [Related]
7. Variation in sclerophylly among Iberian populations of Quercus coccifera L. is associated with genetic differentiation across contrasting environments. Rubio de Casas R; Vargas P; Pérez-Corona E; Cano E; Manrique E; García-Verdugo C; Balaguer L Plant Biol (Stuttg); 2009 May; 11(3):464-72. PubMed ID: 19470117 [TBL] [Abstract][Full Text] [Related]
8. Growth temperature modulates the spatial variability of leaf morphology and chemical elements within crowns of climatically divergent Acer rubrum genotypes. Shahba MA; Bauerle WL Tree Physiol; 2009 Jul; 29(7):869-77. PubMed ID: 19364703 [TBL] [Abstract][Full Text] [Related]
9. Plasticity and stress tolerance override local adaptation in the responses of Mediterranean holm oak seedlings to drought and cold. Gimeno TE; Pías B; Lemos-Filho JP; Valladares F Tree Physiol; 2009 Jan; 29(1):87-98. PubMed ID: 19203935 [TBL] [Abstract][Full Text] [Related]
10. Plant responses to climate in the Cape Floristic Region of South Africa: evidence for adaptive differentiation in the Proteaceae. Carlson JE; Holsinger KE; Prunier R Evolution; 2011 Jan; 65(1):108-24. PubMed ID: 20840595 [TBL] [Abstract][Full Text] [Related]
11. Annual rainfall does not directly determine the carbon isotope ratio of leaves of Eucalyptus species. Turner NC; Schulze ED; Nicolle D; Schumacher J; Kuhlmann I Physiol Plant; 2008 Apr; 132(4):440-5. PubMed ID: 18333997 [TBL] [Abstract][Full Text] [Related]
12. Climatic origins predict variation in photoprotective leaf pigments in response to drought and low temperatures in live oaks (Quercus series Virentes). Ramírez-Valiente JA; Koehler K; Cavender-Bares J Tree Physiol; 2015 May; 35(5):521-34. PubMed ID: 25939867 [TBL] [Abstract][Full Text] [Related]
13. Growth in two common gardens reveals species by environment interaction in carbon isotope discrimination of Eucalyptus. Turner NC; Schulze ED; Nicolle D; Kuhlmann I Tree Physiol; 2010 Jun; 30(6):741-7. PubMed ID: 20462935 [TBL] [Abstract][Full Text] [Related]
14. Clinal adaptation and adaptive plasticity in Artemisia californica: implications for the response of a foundation species to predicted climate change. Pratt JD; Mooney KA Glob Chang Biol; 2013 Aug; 19(8):2454-66. PubMed ID: 23505064 [TBL] [Abstract][Full Text] [Related]
15. Low rainfall-induced shift in leaf trait relationship within species along a semi-arid sandy land transect in northern China. Wei H; Wu B; Yang W; Luo T Plant Biol (Stuttg); 2011 Jan; 13(1):85-92. PubMed ID: 21143729 [TBL] [Abstract][Full Text] [Related]
16. Population-Level Differentiation in Growth Rates and Leaf Traits in Seedlings of the Neotropical Live Oak Ramírez-Valiente JA; Center A; Sparks JP; Sparks KL; Etterson JR; Longwell T; Pilz G; Cavender-Bares J Front Plant Sci; 2017; 8():585. PubMed ID: 28536582 [TBL] [Abstract][Full Text] [Related]
17. Evolutionary trade-offs between drought resistance mechanisms across a precipitation gradient in a seasonally dry tropical oak (Quercus oleoides). Ramírez-Valiente JA; Cavender-Bares J Tree Physiol; 2017 Jul; 37(7):889-901. PubMed ID: 28419347 [TBL] [Abstract][Full Text] [Related]
18. Adaptation, niche conservatism, and convergence: comparative studies of leaf evolution in the California chaparral. Ackerly DD Am Nat; 2004 May; 163(5):654-71. PubMed ID: 15122485 [TBL] [Abstract][Full Text] [Related]
19. Influence of dry season on Quercus suber L. leaf traits in the Iberian Peninsula. Prats KA; Brodersen CR; Ashton MS Am J Bot; 2019 May; 106(5):656-666. PubMed ID: 31034587 [TBL] [Abstract][Full Text] [Related]
20. Leaf and wood carbon isotope ratios, specific leaf areas and wood growth of Eucalyptus species across a rainfall gradient in Australia. Schulze ED; Turner NC; Nicolle D; Schumacher J Tree Physiol; 2006 Apr; 26(4):479-92. PubMed ID: 16414927 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]