These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 20357409)

  • 1. Monte Carlo simulation of focused helium ion beam induced deposition.
    Smith DA; Joy DC; Rack PD
    Nanotechnology; 2010 Apr; 21(17):175302. PubMed ID: 20357409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanopillar growth by focused helium ion-beam-induced deposition.
    Chen P; van Veldhoven E; Sanford CA; Salemink HW; Maas DJ; Smith DA; Rack PD; Alkemade PF
    Nanotechnology; 2010 Nov; 21(45):455302. PubMed ID: 20947951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of neon versus helium ion beam induced deposition via Monte Carlo simulations.
    Timilsina R; Smith DA; Rack PD
    Nanotechnology; 2013 Mar; 24(11):115302. PubMed ID: 23449368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding the kinetics and nanoscale morphology of electron-beam-induced deposition via a three-dimensional Monte Carlo simulation: the effects of the precursor molecule and the deposited material.
    Smith DA; Fowlkes JD; Rack PD
    Small; 2008 Sep; 4(9):1382-9. PubMed ID: 18720436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A nanoscale three-dimensional Monte Carlo simulation of electron-beam-induced deposition with gas dynamics.
    Smith DA; Fowlkes JD; Rack PD
    Nanotechnology; 2007 Jul; 18(26):265308. PubMed ID: 21730402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulating the effects of surface diffusion on electron beam induced deposition via a three-dimensional Monte Carlo simulation.
    Smith DA; Fowlkes JD; Rack PD
    Nanotechnology; 2008 Oct; 19(41):415704. PubMed ID: 21832655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radial secondary electron dose profiles and biological effects in light-ion beams based on analytical and Monte Carlo calculations using distorted wave cross sections.
    Wiklund K; Olivera GH; Brahme A; Lind BK
    Radiat Res; 2008 Jul; 170(1):83-92. PubMed ID: 18582149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulation study on image contrast and spatial resolution in helium ion microscope.
    Inai K; Ohya K; Ishitani T
    J Electron Microsc (Tokyo); 2007 Oct; 56(5):163-9. PubMed ID: 17989086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A model of secondary electron imaging in the helium ion scanning microscope.
    Ramachandra R; Griffin B; Joy D
    Ultramicroscopy; 2009 May; 109(6):748-57. PubMed ID: 19269097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decoupling initial electron beam parameters for Monte Carlo photon beam modelling by removing beam-modifying filters from the beam path.
    De Smedt B; Reynaert N; Flachet F; Coghe M; Thompson MG; Paelinck L; Pittomvils G; De Wagter C; De Neve W; Thierens H
    Phys Med Biol; 2005 Dec; 50(24):5935-51. PubMed ID: 16333165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic profile calculation of deposition resolution by high-energy electrons in electron-beam-induced deposition.
    Mitsuishi K; Liu ZQ; Shimojo M; Han M; Furuya K
    Ultramicroscopy; 2005 Apr; 103(1):17-22. PubMed ID: 15777596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Testing Monte Carlo computer codes for simulations of electron transport in matter.
    Sídlová V; Trojek T
    Appl Radiat Isot; 2010; 68(4-5):961-4. PubMed ID: 20116266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Commissioning stereotactic radiosurgery beams using both experimental and theoretical methods.
    Ding GX; Duggan DM; Coffey CW
    Phys Med Biol; 2006 May; 51(10):2549-66. PubMed ID: 16675869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of electron beam obliquity on lateral buildup ratio: a Monte Carlo dosimetry evaluation.
    Chow JC; Grigorov GN
    Phys Med Biol; 2007 Jul; 52(13):3965-77. PubMed ID: 17664588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of nanowires via helium and neon focused ion beam induced deposition with the gas field ion microscope.
    Wu HM; Stern LA; Chen JH; Huth M; Schwalb CH; Winhold M; Porrati F; Gonzalez CM; Timilsina R; Rack PD
    Nanotechnology; 2013 May; 24(17):175302. PubMed ID: 23548767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A particle-in-cell Monte Carlo code for electron beam ion source simulation.
    Zhao L; Cluggish B; Kim JS; Evstatiev EG
    Rev Sci Instrum; 2012 Feb; 83(2):02A508. PubMed ID: 22380204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrahigh resolution focused electron beam induced processing: the effect of substrate thickness.
    van Dorp WF; Lazić I; Beyer A; Gölzhäuser A; Wagner JB; Hansen TW; Hagen CW
    Nanotechnology; 2011 Mar; 22(11):115303. PubMed ID: 21301081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ion beam capture and charge breeding in electron cyclotron resonance ion source plasmas.
    Kim JS; Zhao L; Cluggish BP; Pardo R
    Rev Sci Instrum; 2007 Oct; 78(10):103503. PubMed ID: 17979415
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monte Carlo simulations of nanoscale focused neon ion beam sputtering.
    Timilsina R; Rack PD
    Nanotechnology; 2013 Dec; 24(49):495303. PubMed ID: 24231648
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The correlation between ion beam/material interactions and practical FIB specimen preparation.
    Prenitzer BI; Urbanik-Shannon CA; Giannuzzi LA; Brown SR; Irwin RB; Shofner TL; Stevie FA
    Microsc Microanal; 2003 Jun; 9(3):216-36. PubMed ID: 12807673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.