BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 20357638)

  • 1. The influence of intervertebral disc shape on the pathway of posterior/posterolateral partial herniation.
    Yates JP; Giangregorio L; McGill SM
    Spine (Phila Pa 1976); 2010 Apr; 35(7):734-9. PubMed ID: 20357638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Progressive disc herniation: an investigation of the mechanism using radiologic, histochemical, and microscopic dissection techniques on a porcine model.
    Tampier C; Drake JD; Callaghan JP; McGill SM
    Spine (Phila Pa 1976); 2007 Dec; 32(25):2869-74. PubMed ID: 18246010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intervertebral disc herniation: studies on a porcine model exposed to highly repetitive flexion/extension motion with compressive force.
    Callaghan JP; McGill SM
    Clin Biomech (Bristol, Avon); 2001 Jan; 16(1):28-37. PubMed ID: 11114441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Posterolateral Disc Prolapse in Flexion Initiated by Lateral Inner Annular Failure: An Investigation of the Herniation Pathway.
    van Heeswijk VM; Thambyah A; Robertson PA; Broom ND
    Spine (Phila Pa 1976); 2017 Nov; 42(21):1604-1613. PubMed ID: 28368980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of Failure Following Simulated Repetitive Lifting: A Clinically Relevant Biomechanical Cadaveric Study.
    Amin DB; Tavakoli J; Freeman BJC; Costi JJ
    Spine (Phila Pa 1976); 2020 Mar; 45(6):357-367. PubMed ID: 31593056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of axial torque in disc herniation.
    Marshall LW; McGill SM
    Clin Biomech (Bristol, Avon); 2010 Jan; 25(1):6-9. PubMed ID: 19815318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How healthy discs herniate: a biomechanical and microstructural study investigating the combined effects of compression rate and flexion.
    Wade KR; Robertson PA; Thambyah A; Broom ND
    Spine (Phila Pa 1976); 2014 Jun; 39(13):1018-28. PubMed ID: 24503692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anterior transvertebral herniotomy for cervical disc herniation: a long-term follow-up study.
    Sakai T; Katoh S; Sairyo K; Tamura T; Hirohashi N; Higashino K; Yasui N
    J Spinal Disord Tech; 2009 Aug; 22(6):408-12. PubMed ID: 19652566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The direction of progressive herniation in porcine spine motion segments is influenced by the orientation of the bending axis.
    Aultman CD; Scannell J; McGill SM
    Clin Biomech (Bristol, Avon); 2005 Feb; 20(2):126-9. PubMed ID: 15621315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of intervertebral disc damage on the mechanical strength of the annulus fibrosus in the adjacent segment.
    Chow N; Gregory DE
    Spine J; 2023 Dec; 23(12):1935-1940. PubMed ID: 37487934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anterior approach to disc herniation with modified anterior microforaminotomy at C7-T2: technical note.
    Ozer AF; Kaner T; Sasani M; Oktenoglu T; Cosar M
    Spine (Phila Pa 1976); 2009 Aug; 34(17):1879-83. PubMed ID: 19644341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Internal strains in healthy and degenerated lumbar intervertebral discs.
    Tsantrizos A; Ito K; Aebi M; Steffen T
    Spine (Phila Pa 1976); 2005 Oct; 30(19):2129-37. PubMed ID: 16205337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The relation between vertebral endplate shape and lumbar disc herniations.
    Harrington J; Sungarian A; Rogg J; Makker VJ; Epstein MH
    Spine (Phila Pa 1976); 2001 Oct; 26(19):2133-8. PubMed ID: 11698892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The morphology of acute disc herniation: a clinically relevant model defining the role of flexion.
    Veres SP; Robertson PA; Broom ND
    Spine (Phila Pa 1976); 2009 Oct; 34(21):2288-96. PubMed ID: 19934808
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intervertebral neural foramina deformation due to two types of repetitive combined loading.
    Drake JD; Callaghan JP
    Clin Biomech (Bristol, Avon); 2009 Jan; 24(1):1-6. PubMed ID: 19008024
    [TBL] [Abstract][Full Text] [Related]  

  • 16. "Surprise" Loading in Flexion Increases the Risk of Disc Herniation Due to Annulus-Endplate Junction Failure: A Mechanical and Microstructural Investigation.
    Wade KR; Robertson PA; Thambyah A; Broom ND
    Spine (Phila Pa 1976); 2015 Jun; 40(12):891-901. PubMed ID: 25803222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A prospective cohort study of close interval computed tomography and magnetic resonance imaging after primary lumbar discectomy: factors associated with recurrent disc herniation and disc height loss.
    McGirt MJ; Eustacchio S; Varga P; Vilendecic M; Trummer M; Gorensek M; Ledic D; Carragee EJ
    Spine (Phila Pa 1976); 2009 Sep; 34(19):2044-51. PubMed ID: 19730212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of static axial torque in combined loading on intervertebral joint failure mechanics using a porcine model.
    Drake JD; Aultman CD; McGill SM; Callaghan JP
    Clin Biomech (Bristol, Avon); 2005 Dec; 20(10):1038-45. PubMed ID: 16098646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Joint analysis of IVD herniation and degeneration by rat caudal needle puncture model.
    Cunha C; Lamas S; Gonçalves RM; Barbosa MA
    J Orthop Res; 2017 Feb; 35(2):258-268. PubMed ID: 26610284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Calcified disc herniation in childhood].
    Ortega-Martínez M; Cabezudo JM; Fernández-Portales I; Gómez-Perals L; Bernal-García LM
    Neurocirugia (Astur); 2006 Aug; 17(4):333-8; discussion 339. PubMed ID: 16960644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.