These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
9. Inhibition of fatty-acid amide hydrolase accelerates acquisition and extinction rates in a spatial memory task. Varvel SA; Wise LE; Niyuhire F; Cravatt BF; Lichtman AH Neuropsychopharmacology; 2007 May; 32(5):1032-41. PubMed ID: 17047668 [TBL] [Abstract][Full Text] [Related]
10. Fatty acid amide hydrolase inhibition heightens anandamide signaling without producing reinforcing effects in primates. Justinova Z; Mangieri RA; Bortolato M; Chefer SI; Mukhin AG; Clapper JR; King AR; Redhi GH; Yasar S; Piomelli D; Goldberg SR Biol Psychiatry; 2008 Dec; 64(11):930-7. PubMed ID: 18814866 [TBL] [Abstract][Full Text] [Related]
11. The endogenous cannabinoid anandamide shares discriminative stimulus effects with ∆(9)-tetrahydrocannabinol in fatty acid amide hydrolase knockout mice. Walentiny DM; Gamage TF; Warner JA; Nguyen TK; Grainger DB; Wiley JL; Vann RE Eur J Pharmacol; 2011 Apr; 656(1-3):63-7. PubMed ID: 21300050 [TBL] [Abstract][Full Text] [Related]
12. Comparison of anandamide transport in FAAH wild-type and knockout neurons: evidence for contributions by both FAAH and the CB1 receptor to anandamide uptake. Ortega-Gutiérrez S; Hawkins EG; Viso A; López-Rodríguez ML; Cravatt BF Biochemistry; 2004 Jun; 43(25):8184-90. PubMed ID: 15209515 [TBL] [Abstract][Full Text] [Related]
13. Chronic Δ⁹-tetrahydrocannabinol treatment in rhesus monkeys: differential tolerance and cross-tolerance among cannabinoids. McMahon LR Br J Pharmacol; 2011 Mar; 162(5):1060-73. PubMed ID: 21091643 [TBL] [Abstract][Full Text] [Related]
14. Enhancement of anandamide formation in the limbic forebrain and reduction of endocannabinoid contents in the striatum of delta9-tetrahydrocannabinol-tolerant rats. Di Marzo V; Berrendero F; Bisogno T; González S; Cavaliere P; Romero J; Cebeira M; Ramos JA; Fernández-Ruiz JJ J Neurochem; 2000 Apr; 74(4):1627-35. PubMed ID: 10737621 [TBL] [Abstract][Full Text] [Related]
15. Inhibition of endocannabinoid catabolic enzymes elicits anxiolytic-like effects in the marble burying assay. Kinsey SG; O'Neal ST; Long JZ; Cravatt BF; Lichtman AH Pharmacol Biochem Behav; 2011 Mar; 98(1):21-7. PubMed ID: 21145341 [TBL] [Abstract][Full Text] [Related]
16. Endocannabinoids decrease neuropathic pain-related behavior in mice through the activation of one or both peripheral CB₁ and CB₂ receptors. Desroches J; Charron S; Bouchard JF; Beaulieu P Neuropharmacology; 2014 Feb; 77():441-52. PubMed ID: 24148808 [TBL] [Abstract][Full Text] [Related]
17. Evidence for both inverse agonism at the cannabinoid CB1 receptor and the lack of an endogenous cannabinoid tone in the rat and guinea-pig isolated ileum myenteric plexus-longitudinal muscle preparation. Makwana R; Molleman A; Parsons ME Br J Pharmacol; 2010 Jun; 160(3):615-26. PubMed ID: 20590566 [TBL] [Abstract][Full Text] [Related]
18. Dysregulation of the endogenous cannabinoid system in adult rats prenatally treated with the cannabinoid agonist WIN 55,212-2. Castelli MP; Paola Piras A; D'Agostino A; Pibiri F; Perra S; Gessa GL; Maccarrone M; Pistis M Eur J Pharmacol; 2007 Nov; 573(1-3):11-9. PubMed ID: 17644084 [TBL] [Abstract][Full Text] [Related]
19. Cross-sensitization and cross-tolerance between exogenous cannabinoid antinociception and endocannabinoid-mediated stress-induced analgesia. Suplita RL; Eisenstein SA; Neely MH; Moise AM; Hohmann AG Neuropharmacology; 2008 Jan; 54(1):161-71. PubMed ID: 17714742 [TBL] [Abstract][Full Text] [Related]