BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

591 related articles for article (PubMed ID: 20357755)

  • 1. FAAH-/- mice display differential tolerance, dependence, and cannabinoid receptor adaptation after delta 9-tetrahydrocannabinol and anandamide administration.
    Falenski KW; Thorpe AJ; Schlosburg JE; Cravatt BF; Abdullah RA; Smith TH; Selley DE; Lichtman AH; Sim-Selley LJ
    Neuropsychopharmacology; 2010 Jul; 35(8):1775-87. PubMed ID: 20357755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Levels, metabolism, and pharmacological activity of anandamide in CB(1) cannabinoid receptor knockout mice: evidence for non-CB(1), non-CB(2) receptor-mediated actions of anandamide in mouse brain.
    Di Marzo V; Breivogel CS; Tao Q; Bridgen DT; Razdan RK; Zimmer AM; Zimmer A; Martin BR
    J Neurochem; 2000 Dec; 75(6):2434-44. PubMed ID: 11080195
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phenotypic assessment of THC discriminative stimulus properties in fatty acid amide hydrolase knockout and wildtype mice.
    Walentiny DM; Vann RE; Wiley JL
    Neuropharmacology; 2015 Jun; 93():237-42. PubMed ID: 25698527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of chronic administration of R-(+)-[2,3-Dihydro-5-methyl-3-[(morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxazinyl]-(1-naphthalenyl)methanone mesylate (WIN55,212-2) or delta(9)-tetrahydrocannabinol on cannabinoid receptor adaptation in mice.
    Sim-Selley LJ; Martin BR
    J Pharmacol Exp Ther; 2002 Oct; 303(1):36-44. PubMed ID: 12235230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. β-arrestin2 regulates cannabinoid CB1 receptor signaling and adaptation in a central nervous system region-dependent manner.
    Nguyen PT; Schmid CL; Raehal KM; Selley DE; Bohn LM; Sim-Selley LJ
    Biol Psychiatry; 2012 Apr; 71(8):714-24. PubMed ID: 22264443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blockade of endocannabinoid hydrolytic enzymes attenuates precipitated opioid withdrawal symptoms in mice.
    Ramesh D; Ross GR; Schlosburg JE; Owens RA; Abdullah RA; Kinsey SG; Long JZ; Nomura DK; Sim-Selley LJ; Cravatt BF; Akbarali HI; Lichtman AH
    J Pharmacol Exp Ther; 2011 Oct; 339(1):173-85. PubMed ID: 21719468
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibitors of endocannabinoid-metabolizing enzymes reduce precipitated withdrawal responses in THC-dependent mice.
    Schlosburg JE; Carlson BL; Ramesh D; Abdullah RA; Long JZ; Cravatt BF; Lichtman AH
    AAPS J; 2009 Jun; 11(2):342-52. PubMed ID: 19430909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting fatty acid amide hydrolase (FAAH) to treat pain and inflammation.
    Schlosburg JE; Kinsey SG; Lichtman AH
    AAPS J; 2009 Mar; 11(1):39-44. PubMed ID: 19184452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of fatty-acid amide hydrolase accelerates acquisition and extinction rates in a spatial memory task.
    Varvel SA; Wise LE; Niyuhire F; Cravatt BF; Lichtman AH
    Neuropsychopharmacology; 2007 May; 32(5):1032-41. PubMed ID: 17047668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fatty acid amide hydrolase inhibition heightens anandamide signaling without producing reinforcing effects in primates.
    Justinova Z; Mangieri RA; Bortolato M; Chefer SI; Mukhin AG; Clapper JR; King AR; Redhi GH; Yasar S; Piomelli D; Goldberg SR
    Biol Psychiatry; 2008 Dec; 64(11):930-7. PubMed ID: 18814866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The endogenous cannabinoid anandamide shares discriminative stimulus effects with ∆(9)-tetrahydrocannabinol in fatty acid amide hydrolase knockout mice.
    Walentiny DM; Gamage TF; Warner JA; Nguyen TK; Grainger DB; Wiley JL; Vann RE
    Eur J Pharmacol; 2011 Apr; 656(1-3):63-7. PubMed ID: 21300050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of anandamide transport in FAAH wild-type and knockout neurons: evidence for contributions by both FAAH and the CB1 receptor to anandamide uptake.
    Ortega-Gutiérrez S; Hawkins EG; Viso A; López-Rodríguez ML; Cravatt BF
    Biochemistry; 2004 Jun; 43(25):8184-90. PubMed ID: 15209515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chronic Δ⁹-tetrahydrocannabinol treatment in rhesus monkeys: differential tolerance and cross-tolerance among cannabinoids.
    McMahon LR
    Br J Pharmacol; 2011 Mar; 162(5):1060-73. PubMed ID: 21091643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of anandamide formation in the limbic forebrain and reduction of endocannabinoid contents in the striatum of delta9-tetrahydrocannabinol-tolerant rats.
    Di Marzo V; Berrendero F; Bisogno T; González S; Cavaliere P; Romero J; Cebeira M; Ramos JA; Fernández-Ruiz JJ
    J Neurochem; 2000 Apr; 74(4):1627-35. PubMed ID: 10737621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of endocannabinoid catabolic enzymes elicits anxiolytic-like effects in the marble burying assay.
    Kinsey SG; O'Neal ST; Long JZ; Cravatt BF; Lichtman AH
    Pharmacol Biochem Behav; 2011 Mar; 98(1):21-7. PubMed ID: 21145341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endocannabinoids decrease neuropathic pain-related behavior in mice through the activation of one or both peripheral CB₁ and CB₂ receptors.
    Desroches J; Charron S; Bouchard JF; Beaulieu P
    Neuropharmacology; 2014 Feb; 77():441-52. PubMed ID: 24148808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for both inverse agonism at the cannabinoid CB1 receptor and the lack of an endogenous cannabinoid tone in the rat and guinea-pig isolated ileum myenteric plexus-longitudinal muscle preparation.
    Makwana R; Molleman A; Parsons ME
    Br J Pharmacol; 2010 Jun; 160(3):615-26. PubMed ID: 20590566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dysregulation of the endogenous cannabinoid system in adult rats prenatally treated with the cannabinoid agonist WIN 55,212-2.
    Castelli MP; Paola Piras A; D'Agostino A; Pibiri F; Perra S; Gessa GL; Maccarrone M; Pistis M
    Eur J Pharmacol; 2007 Nov; 573(1-3):11-9. PubMed ID: 17644084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cross-sensitization and cross-tolerance between exogenous cannabinoid antinociception and endocannabinoid-mediated stress-induced analgesia.
    Suplita RL; Eisenstein SA; Neely MH; Moise AM; Hohmann AG
    Neuropharmacology; 2008 Jan; 54(1):161-71. PubMed ID: 17714742
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of the endocannabinoid-regulating enzyme monoacylglycerol lipase elicits a CB
    Owens RA; Mustafa MA; Ignatowska-Jankowska BM; Damaj MI; Beardsley PM; Wiley JL; Niphakis MJ; Cravatt BF; Lichtman AH
    Neuropharmacology; 2017 Oct; 125():80-86. PubMed ID: 28673548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.