These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 20357863)

  • 1. Coherent 2 microm differential absorption and wind lidar with conductively cooled laser and two-axis scanning device.
    Ishii S; Mizutani K; Fukuoka H; Ishikawa T; Philippe B; Iwai H; Aoki T; Itabe T; Sato A; Asai K
    Appl Opt; 2010 Apr; 49(10):1809-17. PubMed ID: 20357863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diode-pumped 2-μm pulse laser with noncomposite Tm,Ho:YLF rod conduction-cooled down to -80°C.
    Mizutani K; Itabe T; Ishii S; Aoki M; Asai K; Sato A; Fukuoka H; Ishikawa T; Noda K
    Appl Opt; 2015 Sep; 54(26):7865-9. PubMed ID: 26368956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tunable, Q-switched Tm,Ho:LLF laser with a conductively cooled triangular prism rod.
    Sato A; Miyake Y; Asai K; Ishii S; Mizutani K
    Appl Opt; 2012 Mar; 51(9):1236-40. PubMed ID: 22441466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intrapulse temporal and wavelength shifts of a high-power 2.1-µm Ho:YAG laser and their potential influence on atmospheric lidar measurements.
    Vaidyanathan M; Killinger DK
    Appl Opt; 1994 Nov; 33(33):7747-53. PubMed ID: 20962985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 1645 nm coherent Doppler wind lidar with a single-frequency Er:YAG laser.
    Wang K; Gao C; Lin Z; Wang Q; Gao M; Huang S; Chen C
    Opt Express; 2020 May; 28(10):14694-14704. PubMed ID: 32403505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Profiling atmospheric water vapor using a fiber laser lidar system.
    De Young RJ; Barnes NP
    Appl Opt; 2010 Feb; 49(4):562-7. PubMed ID: 20119001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Side-line tunable laser transmitter for differential absorption lidar measurements of CO2: design and application to atmospheric measurements.
    Koch GJ; Beyon JY; Gibert F; Barnes BW; Ismail S; Petros M; Petzar PJ; Yu J; Modlin EA; Davis KJ; Singh UN
    Appl Opt; 2008 Mar; 47(7):944-56. PubMed ID: 18311266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diode laser lidar wind velocity sensor using a liquid-crystal retarder for non-mechanical beam-steering.
    Rodrigo PJ; Iversen TF; Hu Q; Pedersen C
    Opt Express; 2014 Nov; 22(22):26674-9. PubMed ID: 25401817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 11-mJ, 15-Hz single-frequency diode-pumped Q-switched Er, Yb:phosphate glass laser.
    Yanagisawa T; Asaka K; Hamazu K; Hirano Y
    Opt Lett; 2001 Aug; 26(16):1262-4. PubMed ID: 18049580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iodine-filter-based mobile Doppler lidar to make continuous and full-azimuth-scanned wind measurements: data acquisition and analysis system, data retrieval methods, and error analysis.
    Wang Z; Liu Z; Liu L; Wu S; Liu B; Li Z; Chu X
    Appl Opt; 2010 Dec; 49(36):6960-78. PubMed ID: 21173831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wind speed measurements of Doppler-shifted absorption lines using two-beam interferometry.
    Pierce RM; Roark SE
    Appl Opt; 2012 Apr; 51(12):1853-64. PubMed ID: 22534889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coherent lidar airborne windshear sensor: performance evaluation.
    Targ R; Kavaya MJ; Huffaker RM; Bowles RL
    Appl Opt; 1991 May; 30(15):2013-26. PubMed ID: 20700170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A laser-Compton scattering prototype experiment at 100 MeV linac of Shanghai Institute of Applied Physics.
    Luo W; Xu W; Pan QY; Cai XZ; Chen JG; Chen YZ; Fan GT; Fan GW; Guo W; Li YJ; Liu WH; Lin GQ; Ma YG; Shen WQ; Shi XC; Xu BJ; Xu JQ; Xu Y; Zhang HO; Yan Z; Yang LF; Zhao MH
    Rev Sci Instrum; 2010 Jan; 81(1):013304. PubMed ID: 20113090
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual-wavelength injection-seeded Q-switched Ho:YLF laser for CO
    Wang Y; Dai T; Liu X; Ju Y; Yao B
    Opt Lett; 2019 Dec; 44(24):6049-6052. PubMed ID: 32628216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cavity-dumped 2.70 microm erbium laser using optomechanical shutter.
    Park YH; Won Lee D; Kong HJ; Kim YS
    Rev Sci Instrum; 2008 Dec; 79(12):123102. PubMed ID: 19123540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Air pollution monitoring with a Q-switched CO(2)-laser lidar using heterodyne detection.
    Lundqvist S; Fält CO; Persson U; Marthinsson B; Eng ST
    Appl Opt; 1981 Jul; 20(14):2534-8. PubMed ID: 20332988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Technique for correcting effects of long CO(2) laser pulses in aerosol-backscattered coherent lidar returns.
    Zhao Y; Hardesty RM
    Appl Opt; 1988 Jul; 27(13):2719-29. PubMed ID: 20531828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 2-μm Ho emitter-based coherent DIAL for CO(2) profiling in the atmosphere.
    Gibert F; Edouart D; Cénac C; Le Mounier F; Dumas A
    Opt Lett; 2015 Jul; 40(13):3093-6. PubMed ID: 26125375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Edge technique: theory and application to the lidar measurement of atmospheric wind.
    Korb CL; Gentry BM; Weng CY
    Appl Opt; 1992 Jul; 31(21):4202-13. PubMed ID: 20725404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabry-Perot etalon-based ultraviolet trifrequency high-spectral-resolution lidar for wind, temperature, and aerosol measurements from 0.2 to 35  km altitude.
    Shen F; Xie C; Qiu C; Wang B
    Appl Opt; 2018 Nov; 57(31):9328-9340. PubMed ID: 30461973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.