These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 20357875)

  • 1. Development of image mappers for hyperspectral biomedical imaging applications.
    Kester RT; Gao L; Tkaczyk TS
    Appl Opt; 2010 Apr; 49(10):1886-99. PubMed ID: 20357875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Snapshot Image Mapping Spectrometer (IMS) with high sampling density for hyperspectral microscopy.
    Gao L; Kester RT; Hagen N; Tkaczyk TS
    Opt Express; 2010 Jul; 18(14):14330-44. PubMed ID: 20639917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Research on Image Mapping Spectrometer Based on Ultra-Thin Glass Layered Mapping.
    Zhou P; Lv Y; Zhou J; Zheng Y
    Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of a multifaceted mapping mirror using two-photon polymerization for a snapshot image mapping spectrometer.
    Lu J; Ng XW; Piston D; Tkaczyk TS
    Appl Opt; 2023 Jul; 62(20):5416-5426. PubMed ID: 37706858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Depth-resolved image mapping spectrometer (IMS) with structured illumination.
    Gao L; Bedard N; Hagen N; Kester RT; Tkaczyk TS
    Opt Express; 2011 Aug; 19(18):17439-52. PubMed ID: 21935110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hyperspectral confocal microscope.
    Sinclair MB; Haaland DM; Timlin JA; Jones HD
    Appl Opt; 2006 Aug; 45(24):6283-91. PubMed ID: 16892134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of a spectrograph based hyperspectral imaging system.
    Kosec M; Bürmen M; Tomaževič D; Pernuš F; Likar B
    Opt Express; 2013 May; 21(10):12085-99. PubMed ID: 23736429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transient full-field vibration measurement using spectroscopical stereo photogrammetry.
    Yue K; Li Z; Zhang M; Chen S
    Opt Express; 2010 Dec; 18(26):26866-71. PubMed ID: 21196963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An excitation wavelength-scanning spectral imaging system for preclinical imaging.
    Leavesley S; Jiang Y; Patsekin V; Rajwa B; Robinson JP
    Rev Sci Instrum; 2008 Feb; 79(2 Pt 1):023707. PubMed ID: 18315305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A hyperspectral fluorescence system for 3D in vivo optical imaging.
    Zavattini G; Vecchi S; Mitchell G; Weisser U; Leahy RM; Pichler BJ; Smith DJ; Cherry SR
    Phys Med Biol; 2006 Apr; 51(8):2029-43. PubMed ID: 16585843
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acousto-optic-tunable-filter-based spectropolarimetric imagers for medical diagnostic applications--instrument design point of view.
    Gupta N
    J Biomed Opt; 2005; 10(5):051802. PubMed ID: 16292960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pushbroom hyperspectral imaging system with selectable region of interest for medical imaging.
    Lim HT; Murukeshan VM
    J Biomed Opt; 2015 Apr; 20(4):046010. PubMed ID: 25900146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Video rate spectral imaging using a coded aperture snapshot spectral imager.
    Wagadarikar AA; Pitsianis NP; Sun X; Brady DJ
    Opt Express; 2009 Apr; 17(8):6368-88. PubMed ID: 19365462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generalization of the Lyot filter and its application to snapshot spectral imaging.
    Gorman A; Fletcher-Holmes DW; Harvey AR
    Opt Express; 2010 Mar; 18(6):5602-8. PubMed ID: 20389576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Imaging through a scattering medium with an interferential spectrometer by selection of an amplitude modulation correlator.
    Ben Houcine K; Jacquot M; Verrier I; Brun G; Veillas C
    Opt Lett; 2004 Dec; 29(24):2908-10. PubMed ID: 15645820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time hyperspectral fluorescence imaging of pancreatic β-cell dynamics with the image mapping spectrometer.
    Elliott AD; Gao L; Ustione A; Bedard N; Kester R; Piston DW; Tkaczyk TS
    J Cell Sci; 2012 Oct; 125(Pt 20):4833-40. PubMed ID: 22854044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compact Image Slicing Spectrometer (ISS) for hyperspectral fluorescence microscopy.
    Gao L; Kester RT; Tkaczyk TS
    Opt Express; 2009 Jul; 17(15):12293-308. PubMed ID: 19654631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High performance image mapping spectrometer (IMS) for snapshot hyperspectral imaging applications.
    Pawlowski ME; Dwight JG; Nguyen TU; Tkaczyk TS
    Opt Express; 2019 Jan; 27(2):1597-1612. PubMed ID: 30696224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imaging by integrating stitched spectrograms.
    Teale C; Adams D; Murnane M; Kapteyn H; Kane DJ
    Opt Express; 2013 Mar; 21(6):6783-93. PubMed ID: 23546061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accurate ray tracing model of an imaging system based on image mapper.
    Liu A; Su L; Yuan Y; Ding X
    Opt Express; 2020 Jan; 28(2):2251-2262. PubMed ID: 32121919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.