These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 20357880)

  • 1. Inscription and characterization of waveguides written into borosilicate glass by a high-repetition-rate femtosecond laser at 800 nm.
    Allsop T; Dubov M; Mezentsev V; Bennion I
    Appl Opt; 2010 Apr; 49(10):1938-50. PubMed ID: 20357880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-loss waveguides fabricated in BK7 glass by high repetition rate femtosecond fiber laser.
    Eaton SM; Ng ML; Bonse J; Mermillod-Blondin A; Zhang H; Rosenfeld A; Herman PR
    Appl Opt; 2008 Apr; 47(12):2098-102. PubMed ID: 18425184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-loss channel optical waveguide fabrication in Nd(3+)-doped silicate glasses by femtosecond laser direct writing.
    Li SL; Han P; Shi M; Yao Y; Hu B; Wang M; Zhu X
    Opt Express; 2011 Nov; 19(24):23958-64. PubMed ID: 22109420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Femtosecond-laser-written Microstructured Waveguides in BK7 Glass.
    Chen GY; Piantedosi F; Otten D; Kang YQ; Zhang WQ; Zhou X; Monro TM; Lancaster DG
    Sci Rep; 2018 Jul; 8(1):10377. PubMed ID: 29991701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrafast laser inscription of Bragg-grating waveguides using the multiscan technique.
    Brown G; Thomson RR; Kar AK; Psaila ND; Bookey HT
    Opt Lett; 2012 Feb; 37(4):491-3. PubMed ID: 22344083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Embedded optical waveguides fabricated in SF10 glass by low-repetition-rate ultrafast laser.
    Bai J; Long X; Liu X; Huo G; Zhao W; Stoian R; Hui R; Cheng G
    Appl Opt; 2013 Oct; 52(30):7288-94. PubMed ID: 24216582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inscription of optical waveguides in crystalline silicon by mid-infrared femtosecond laser pulses.
    Nejadmalayeri AH; Herman PR; Burghoff J; Will M; Nolte S; Tünnermann A
    Opt Lett; 2005 May; 30(9):964-6. PubMed ID: 15906971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inscription of type I and depressed cladding waveguides in lithium niobate using a femtosecond laser.
    Bhardwaj S; Mittholiya K; Bhatnagar A; Bernard R; Dharmadhikari JA; Mathur D; Dharmadhikari AK
    Appl Opt; 2017 Jul; 56(20):5692-5697. PubMed ID: 29047712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Femtosecond laser direct inscription of surface skimming waveguides in bulk glass.
    Bérubé JP; Vallée R
    Opt Lett; 2016 Jul; 41(13):3074-7. PubMed ID: 27367105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrafast laser inscription of near-infrared waveguides in polycrystalline ZnSe.
    Macdonald JR; Thomson RR; Beecher SJ; Psaila ND; Bookey HT; Kar AK
    Opt Lett; 2010 Dec; 35(23):4036-8. PubMed ID: 21124604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrafast laser inscription of mid-IR directional couplers for stellar interferometry.
    Arriola A; Mukherjee S; Choudhury D; Labadie L; Thomson RR
    Opt Lett; 2014 Aug; 39(16):4820-2. PubMed ID: 25121883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate.
    Eaton S; Zhang H; Herman P; Yoshino F; Shah L; Bovatsek J; Arai A
    Opt Express; 2005 Jun; 13(12):4708-16. PubMed ID: 19495387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-resolved interferometry of femtosecond-laser-induced processes under tight focusing and close-to-optical breakdown inside borosilicate glass.
    Hayasaki Y; Isaka M; Takita A; Juodkazis S
    Opt Express; 2011 Mar; 19(7):5725-34. PubMed ID: 21451597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Femtosecond laser inscription of depressed cladding single-mode mid-infrared waveguides in sapphire.
    Bérubé JP; Lapointe J; Dupont A; Bernier M; Vallée R
    Opt Lett; 2019 Jan; 44(1):37-40. PubMed ID: 30645539
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Propagation losses in undoped and n-doped polycrystalline silicon wire waveguides.
    Zhu S; Fang Q; Yu MB; Lo GQ; Kwong DL
    Opt Express; 2009 Nov; 17(23):20891-9. PubMed ID: 19997326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrated wavelength-selective optical waveguides for microfluidic-based laser-induced fluorescence detection.
    Bliss CL; McMullin JN; Backhouse CJ
    Lab Chip; 2008 Jan; 8(1):143-51. PubMed ID: 18094772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Waveguide writing in fused silica with a femtosecond fiber laser at 522 nm and 1 MHz repetition rate.
    Shah L; Arai A; Eaton S; Herman P
    Opt Express; 2005 Mar; 13(6):1999-2006. PubMed ID: 19495082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrafast laser fabrication of low-loss waveguides in chalcogenide glass with 0.65 dB/cm loss.
    McMillen B; Zhang B; Chen KP; Benayas A; Jaque D
    Opt Lett; 2012 May; 37(9):1418-20. PubMed ID: 22555690
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of ultrafast laser written low-loss waveguides in flexible As₂S₃ chalcogenide glass tape.
    Lapointe J; Ledemi Y; Loranger S; Iezzi VL; Soares de Lima Filho E; Parent F; Morency S; Messaddeq Y; Kashyap R
    Opt Lett; 2016 Jan; 41(2):203-6. PubMed ID: 26766674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ytterbium fiber laser based on first-order fiber Bragg gratings written with 400 nm femtosecond pulses and a phase-mask.
    Bernier M; Vallée R; Morasse B; Desrosiers C; Saliminia A; Sheng Y
    Opt Express; 2009 Oct; 17(21):18887-93. PubMed ID: 20372623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.