BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 20357891)

  • 1. Initialization and self-organized optimization of recurrent neural network connectivity.
    Boedecker J; Obst O; Mayer NM; Asada M
    HFSP J; 2009 Oct; 3(5):340-9. PubMed ID: 20357891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Composing recurrent spiking neural networks using locally-recurrent motifs and risk-mitigating architectural optimization.
    Zhang W; Geng H; Li P
    Front Neurosci; 2024; 18():1412559. PubMed ID: 38966757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contextual Integration in Cortical and Convolutional Neural Networks.
    Iyer R; Hu B; Mihalas S
    Front Comput Neurosci; 2020; 14():31. PubMed ID: 32390818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biologically plausible deep learning - But how far can we go with shallow networks?
    Illing B; Gerstner W; Brea J
    Neural Netw; 2019 Oct; 118():90-101. PubMed ID: 31254771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unsupervised Learning and Clustered Connectivity Enhance Reinforcement Learning in Spiking Neural Networks.
    Weidel P; Duarte R; Morrison A
    Front Comput Neurosci; 2021; 15():543872. PubMed ID: 33746728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational capabilities of random automata networks for reservoir computing.
    Snyder D; Goudarzi A; Teuscher C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042808. PubMed ID: 23679474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chaotic time series prediction using phase space reconstruction based conceptor network.
    Zhang A; Xu Z
    Cogn Neurodyn; 2020 Dec; 14(6):849-857. PubMed ID: 33101536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Connectivity, dynamics, and memory in reservoir computing with binary and analog neurons.
    Büsing L; Schrauwen B; Legenstein R
    Neural Comput; 2010 May; 22(5):1272-311. PubMed ID: 20028227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A neuro-inspired general framework for the evolution of stochastic dynamical systems: Cellular automata, random Boolean networks and echo state networks towards criticality.
    Pontes-Filho S; Lind P; Yazidi A; Zhang J; Hammer H; Mello GBM; Sandvig I; Tufte G; Nichele S
    Cogn Neurodyn; 2020 Oct; 14(5):657-674. PubMed ID: 33014179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An unsupervised parameter learning model for RVFL neural network.
    Zhang Y; Wu J; Cai Z; Du B; Yu PS
    Neural Netw; 2019 Apr; 112():85-97. PubMed ID: 30771727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cluster-Based Input Weight Initialization for Echo State Networks.
    Steiner P; Jalalvand A; Birkholz P
    IEEE Trans Neural Netw Learn Syst; 2023 Oct; 34(10):7648-7659. PubMed ID: 35120012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep Liquid State Machines With Neural Plasticity for Video Activity Recognition.
    Soures N; Kudithipudi D
    Front Neurosci; 2019; 13():686. PubMed ID: 31333404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transferring learning from external to internal weights in echo-state networks with sparse connectivity.
    Sussillo D; Abbott LF
    PLoS One; 2012; 7(5):e37372. PubMed ID: 22655041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The connectivity degree controls the difficulty in reservoir design of random boolean networks.
    Calvet E; Reulet B; Rouat J
    Front Comput Neurosci; 2024; 18():1348138. PubMed ID: 38550512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How embedded memory in recurrent neural network architectures helps learning long-term temporal dependencies.
    Lin T; Horne BG; Giles CL
    Neural Netw; 1998 Jul; 11(5):861-868. PubMed ID: 12662788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RM-SORN: a reward-modulated self-organizing recurrent neural network.
    Aswolinskiy W; Pipa G
    Front Comput Neurosci; 2015; 9():36. PubMed ID: 25852533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatiotemporal signal classification via principal components of reservoir states.
    Prater A
    Neural Netw; 2017 Jul; 91():66-75. PubMed ID: 28499191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Information-Theoretic Intrinsic Plasticity for Online Unsupervised Learning in Spiking Neural Networks.
    Zhang W; Li P
    Front Neurosci; 2019; 13():31. PubMed ID: 30804736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Learning Universal Computations with Spikes.
    Thalmeier D; Uhlmann M; Kappen HJ; Memmesheimer RM
    PLoS Comput Biol; 2016 Jun; 12(6):e1004895. PubMed ID: 27309381
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On learning navigation behaviors for small mobile robots with reservoir computing architectures.
    Antonelo EA; Schrauwen B
    IEEE Trans Neural Netw Learn Syst; 2015 Apr; 26(4):763-80. PubMed ID: 25794381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.