BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 20358386)

  • 1. Structure and dynamics of human vimentin intermediate filament dimer and tetramer in explicit and implicit solvent models.
    Qin Z; Buehler MJ
    J Mol Model; 2011 Jan; 17(1):37-48. PubMed ID: 20358386
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hierarchical structure controls nanomechanical properties of vimentin intermediate filaments.
    Qin Z; Kreplak L; Buehler MJ
    PLoS One; 2009 Oct; 4(10):e7294. PubMed ID: 19806221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomic structure of the vimentin central α-helical domain and its implications for intermediate filament assembly.
    Chernyatina AA; Nicolet S; Aebi U; Herrmann H; Strelkov SV
    Proc Natl Acad Sci U S A; 2012 Aug; 109(34):13620-5. PubMed ID: 22869704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanomechanical properties of vimentin intermediate filament dimers.
    Qin Z; Kreplak L; Buehler MJ
    Nanotechnology; 2009 Oct; 20(42):425101. PubMed ID: 19779230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural Dynamics of the Vimentin Coiled-coil Contact Regions Involved in Filament Assembly as Revealed by Hydrogen-Deuterium Exchange.
    Premchandar A; Mücke N; Poznański J; Wedig T; Kaus-Drobek M; Herrmann H; Dadlez M
    J Biol Chem; 2016 Nov; 291(48):24931-24950. PubMed ID: 27694444
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long dynamics simulations of proteins using atomistic force fields and a continuum representation of solvent effects: calculation of structural and dynamic properties.
    Li X; Hassan SA; Mehler EL
    Proteins; 2005 Aug; 60(3):464-84. PubMed ID: 15959866
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing the flexibility of intermediate filaments by atomic force microscopy.
    Mücke N; Kreplak L; Kirmse R; Wedig T; Herrmann H; Aebi U; Langowski J
    J Mol Biol; 2004 Jan; 335(5):1241-50. PubMed ID: 14729340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular architecture of intermediate filaments.
    Strelkov SV; Herrmann H; Aebi U
    Bioessays; 2003 Mar; 25(3):243-51. PubMed ID: 12596228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coiled-coil intermediate filament stutter instability and molecular unfolding.
    Arslan M; Qin Z; Buehler MJ
    Comput Methods Biomech Biomed Engin; 2011 May; 14(5):483-9. PubMed ID: 21516532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conserved segments 1A and 2B of the intermediate filament dimer: their atomic structures and role in filament assembly.
    Strelkov SV; Herrmann H; Geisler N; Wedig T; Zimbelmann R; Aebi U; Burkhard P
    EMBO J; 2002 Mar; 21(6):1255-66. PubMed ID: 11889032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Free energy landscape of protein folding in water: explicit vs. implicit solvent.
    Zhou R
    Proteins; 2003 Nov; 53(2):148-61. PubMed ID: 14517967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformational sampling with implicit solvent models: application to the PHF6 peptide in tau protein.
    Huang A; Stultz CM
    Biophys J; 2007 Jan; 92(1):34-45. PubMed ID: 17040986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonadiabatic dynamics of electron transfer in solution: explicit and implicit solvent treatments that include multiple relaxation time scales.
    Schwerdtfeger CA; Soudackov AV; Hammes-Schiffer S
    J Chem Phys; 2014 Jan; 140(3):034113. PubMed ID: 25669369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of the structure of a silk-like protein in oligomeric states using explicit and implicit solvent models.
    Razzokov J; Naderi S; van der Schoot P
    Soft Matter; 2014 Aug; 10(29):5362-74. PubMed ID: 24937549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring intermediate filament assembly by small-angle x-ray scattering reveals the molecular architecture of assembly intermediates.
    Sokolova AV; Kreplak L; Wedig T; Mücke N; Svergun DI; Herrmann H; Aebi U; Strelkov SV
    Proc Natl Acad Sci U S A; 2006 Oct; 103(44):16206-11. PubMed ID: 17050693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissecting the contribution of actin and vimentin intermediate filaments to mechanical phenotype of suspended cells using high-throughput deformability measurements and computational modeling.
    Gladilin E; Gonzalez P; Eils R
    J Biomech; 2014 Aug; 47(11):2598-605. PubMed ID: 24952458
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intermediate filament-deficient cells are mechanically softer at large deformation: a multi-scale simulation study.
    Bertaud J; Qin Z; Buehler MJ
    Acta Biomater; 2010 Jul; 6(7):2457-66. PubMed ID: 20102752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Desmin and vimentin intermediate filament networks: their viscoelastic properties investigated by mechanical rheometry.
    Schopferer M; Bär H; Hochstein B; Sharma S; Mücke N; Herrmann H; Willenbacher N
    J Mol Biol; 2009 Apr; 388(1):133-43. PubMed ID: 19281820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of implicit- and explicit-solvent simulations of self-assembly in block copolymer and solute systems.
    Spaeth JR; Kevrekidis IG; Panagiotopoulos AZ
    J Chem Phys; 2011 Apr; 134(16):164902. PubMed ID: 21528979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Completion of the Vimentin Rod Domain Structure Using Experimental Restraints: A New Tool for Exploring Intermediate Filament Assembly and Mutations.
    Gae DD; Budamagunta MS; Hess JF; McCarrick RM; Lorigan GA; FitzGerald PG; Voss JC
    Structure; 2019 Oct; 27(10):1547-1560.e4. PubMed ID: 31402219
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.