These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 203584)
1. Sarcoplasmic reticulum ATPase. Spin labeling detection of ligand-induced changes in the relative reactivities of certain sulfhydryl groups. Champeil P; Büschlen-Boucly S; Bastide F; Gary-Bobo C J Biol Chem; 1978 Feb; 253(4):1179-86. PubMed ID: 203584 [TBL] [Abstract][Full Text] [Related]
2. Reactivity of sarcoplasmic reticulum adenosinetriphosphatase with iodoacetamide spin-label: evidence for two conformational states of the substrate binding sites. Coan C; Keating S Biochemistry; 1982 Jun; 21(13):3214-20. PubMed ID: 6213264 [TBL] [Abstract][Full Text] [Related]
3. Ca2+-dependent effect of ATP on spin-labeled sarcoplasmic reticulum. Coan CR; Inesi G J Biol Chem; 1977 May; 252(9):3044-9. PubMed ID: 192726 [TBL] [Abstract][Full Text] [Related]
4. Chemical modification of the Ca2+-dependent ATPase of sarcoplasmic reticulum from skeletal muscle. I. Binding of N-ethylmaleimide to sarcoplasmic reticulum: evidence for sulfhydryl groups in the active site of ATPase and for conformational changes induced by adenosine tri- and diphosphate. Yoshida H; Tonomura Y J Biochem; 1976 Mar; 79(3):649-54. PubMed ID: 181370 [TBL] [Abstract][Full Text] [Related]
5. An iodoacetamide spin-label selectively labels a cysteine side chain in an occluded site on the sarcoplasmic reticulum Ca(2+)-ATPase. Wawrzynow A; Collins JH; Coan C Biochemistry; 1993 Oct; 32(40):10803-11. PubMed ID: 8399229 [TBL] [Abstract][Full Text] [Related]
6. Chemical modification and fluorescence labeling study of Ca2+,Mg2+-adenosine triphosphatase of sarcoplasmic reticulum using iodoacetamide and its N-substituted derivatives. Baba A; Nakamura T; Kawakita M J Biochem; 1986 Nov; 100(5):1137-47. PubMed ID: 2950079 [TBL] [Abstract][Full Text] [Related]
7. Ca2+ regulation of conformational states in the transport cycle of spin-labeled sarcoplasmic reticulum ATPase. Coan C; Verjovski-Almeida S; Inesi G J Biol Chem; 1979 Apr; 254(8):2968-74. PubMed ID: 218959 [No Abstract] [Full Text] [Related]
8. Spin-labeling of adenosine triphosphatase in sarcoplasmic reticulum membrane and change in the state of the spin labels induced by deoxycholate. Nakamura H J Biochem; 1977 Oct; 82(4):923-30. PubMed ID: 200608 [TBL] [Abstract][Full Text] [Related]
9. Sensitivity of spin-labeled sarcoplasmic reticulum to the phosphorylation state of the catalytic site in aqueous media and in dimethyl sulfoxide. Coan C Biochemistry; 1983 Dec; 22(25):5826-36. PubMed ID: 6318804 [TBL] [Abstract][Full Text] [Related]
11. Effect of phospholipid substitution on the mobility of spin labels bound to the ATPase of sarcoplasmic reticulum. Nakamura H; Martonosi AN J Biochem; 1981 Jan; 89(1):21-8. PubMed ID: 6260760 [TBL] [Abstract][Full Text] [Related]
12. Studies on conformational transitions of Ca2+, Mg2+-adenosine triphosphatase of sarcoplasmic reticulum. I. Selective labeling of functionally distinct sulfhydryl groups with conformational probes and evidence for a Ca2+-dependent conformational change. Yasuoka-Yabe K; Kawakita M J Biochem; 1983 Sep; 94(3):665-75. PubMed ID: 6139370 [TBL] [Abstract][Full Text] [Related]
13. The effects of ionic conditions, temperature, and chemical modification on the fluorescence of myosin during the steady state of ATP hydrolysis. A comparison of the fluorescnece and electron spin resonance spectra of the spin-labeled enzyme. Seidel JC J Biol Chem; 1975 Jul; 250(14):5681-7. PubMed ID: 237927 [TBL] [Abstract][Full Text] [Related]
14. Saturation transfer electron spin resonance study on the rotational diffusion of calcium- and magnesium-dependent adenosine triphosphatase in sarcoplasmic reticulum membranes. Kirino Y; Ohkuma T; Shimizu H J Biochem; 1978 Jul; 84(1):111-5. PubMed ID: 211120 [TBL] [Abstract][Full Text] [Related]
15. Location of the Ca(2+)-transport site of Ca(2+)-transporting ATPase of the sarcoplasmic reticulum as determined by analysis of paramagnetic interaction between Gd3+ ions bound at the transport site and membrane-embedded nitroxide spin probes. Imamura Y; Kawakita M J Biochem; 1991 Aug; 110(2):220-5. PubMed ID: 1662202 [TBL] [Abstract][Full Text] [Related]
16. Rotational motion of the sarcoplasmic reticulum Ca2+-ATPase. Thomas DD; Hidalgo C Proc Natl Acad Sci U S A; 1978 Nov; 75(11):5488-92. PubMed ID: 214789 [TBL] [Abstract][Full Text] [Related]
17. A spin-label study of the effects of drugs on calcium release from isolated sarcoplasmic reticulum vesicles. Takishima K; Shimizu H; Setaka M; Kwan T J Biochem; 1980 Jan; 87(1):305-12. PubMed ID: 6244262 [TBL] [Abstract][Full Text] [Related]
18. Pressure-induced inactivation of sarcoplasmic reticulum adenosine triphosphatase during high-speed centrifugation. Champeil P; Büschlen S; Guillain F Biochemistry; 1981 Mar; 20(6):1520-4. PubMed ID: 6261797 [TBL] [Abstract][Full Text] [Related]
19. Proton inactivation of Ca2+ transport by sarcoplasmic reticulum. Berman MC; McIntosh DB; Kench JE J Biol Chem; 1977 Feb; 252(3):994-1001. PubMed ID: 14142 [TBL] [Abstract][Full Text] [Related]
20. [Study of Ca-dependent ATPase of sarcoplasmic reticulum by the use of selectively bound spin labels]. Kuznetsov VA; Maksina AG; Livshits VA; Azizova OA; Vladimiro9v IuA Mol Biol (Mosk); 1981; 15(3):668-79. PubMed ID: 6265763 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]