These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 20358826)

  • 1. [Study on preparation of composite nano-scale Fe3O4 for phosphorus control].
    Li L; Pan G; Chen H
    Huan Jing Ke Xue; 2010 Mar; 31(3):678-83. PubMed ID: 20358826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immobilization of non-point phosphorus using stabilized magnetite nanoparticles with enhanced transportability and reactivity in soils.
    Pan G; Li L; Zhao D; Chen H
    Environ Pollut; 2010 Jan; 158(1):35-40. PubMed ID: 19732999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immobilization of As(III) in soil and groundwater using a new class of polysaccharide stabilized Fe-Mn oxide nanoparticles.
    An B; Zhao D
    J Hazard Mater; 2012 Apr; 211-212():332-41. PubMed ID: 22119304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immobilization of selenite in soil and groundwater using stabilized Fe-Mn binary oxide nanoparticles.
    Xie W; Liang Q; Qian T; Zhao D
    Water Res; 2015 Mar; 70():485-94. PubMed ID: 25577492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles: effects of sorption, surfactants, and natural organic matter.
    Zhang M; He F; Zhao D; Hao X
    Water Res; 2011 Mar; 45(7):2401-14. PubMed ID: 21376362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic and equilibrium studies of the RDX removal from soil using CMC-coated zerovalent iron nanoparticles.
    Naja G; Apiratikul R; Pavasant P; Volesky B; Hawari J
    Environ Pollut; 2009; 157(8-9):2405-12. PubMed ID: 19345459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradation of aqueous and soil-sorbed estradiol using a new class of stabilized manganese oxide nanoparticles.
    Han B; Zhang M; Zhao D; Feng Y
    Water Res; 2015 Mar; 70():288-99. PubMed ID: 25543239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In-situ degradation of soil-sorbed 17β-estradiol using carboxymethyl cellulose stabilized manganese oxide nanoparticles: Column studies.
    Han B; Zhang M; Zhao D
    Environ Pollut; 2017 Apr; 223():238-246. PubMed ID: 28108162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Degradation of norfloxacin by nano-Fe3O4/H2O2].
    Zhang D; Wang YX; Niu HY; Meng ZF
    Huan Jing Ke Xue; 2011 Oct; 32(10):2943-8. PubMed ID: 22279906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly efficient removal of heavy metal ions by carboxymethyl cellulose-immobilized Fe
    Fan H; Ma X; Zhou S; Huang J; Liu Y; Liu Y
    Carbohydr Polym; 2019 Jun; 213():39-49. PubMed ID: 30879683
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of red soil in removing phosphorus from water column and reducing phosphorus release from sediment in Lake Taihu.
    Dai L; Pan G
    Water Sci Technol; 2014; 69(5):1052-8. PubMed ID: 24622555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient prevention of nanomaterials transport in the porous media by treatment with polyelectrolytes.
    Soenaryo T; Murata S; Zinchenko A
    Chemosphere; 2018 Nov; 210():567-576. PubMed ID: 30029149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Catalyzed oxidation of catechol by the heterogeneous Fenton-like reaction of nano-Fe3O4-H2O2 system].
    He J; Yang XF; Zhang WJ; Wang DS
    Huan Jing Ke Xue; 2013 May; 34(5):1773-81. PubMed ID: 23914527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spherical polystyrene-supported nano-Fe3O4 of high capacity and low-field separation for arsenate removal from water.
    Jiang W; Chen X; Niu Y; Pan B
    J Hazard Mater; 2012 Dec; 243():319-25. PubMed ID: 23131498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of the chitosan grafted poly (quaternary ammonium)/Fe3O4 nanoparticles and its adsorption performance for food yellow 3.
    Yu C; Geng J; Zhuang Y; Zhao J; Chu L; Luo X; Zhao Y; Guo Y
    Carbohydr Polym; 2016 Nov; 152():327-336. PubMed ID: 27516279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fe3O4 and MnO2 assembled on honeycomb briquette cinders (HBC) for arsenic removal from aqueous solutions.
    Zhu J; Baig SA; Sheng T; Lou Z; Wang Z; Xu X
    J Hazard Mater; 2015 Apr; 286():220-8. PubMed ID: 25585269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studying absorbance properties and mercury remediation capabilities of gold-graphene oxide-iron oxide (Au-GO-Fe
    Sanchez JRG; Joson PRS; Vega MM
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2020; 55(3):216-223. PubMed ID: 31642370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetite and zero-valent iron nanoparticles for the remediation of uranium contaminated environmental water.
    Crane RA; Dickinson M; Popescu IC; Scott TB
    Water Res; 2011 Apr; 45(9):2931-42. PubMed ID: 21470652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and characterization of corn cob activated carbon coated with nano-sized magnetite particles for the removal of Cr(VI).
    Nethaji S; Sivasamy A; Mandal AB
    Bioresour Technol; 2013 Apr; 134():94-100. PubMed ID: 23500565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption and magnetic removal of neutral red dye from aqueous solution using Fe3O4 hollow nanospheres.
    Iram M; Guo C; Guan Y; Ishfaq A; Liu H
    J Hazard Mater; 2010 Sep; 181(1-3):1039-50. PubMed ID: 20566240
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.