BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 20359238)

  • 21. A Tyr/Ser protein phosphatase encoded by vaccinia virus.
    Guan KL; Broyles SS; Dixon JE
    Nature; 1991 Mar; 350(6316):359-62. PubMed ID: 1848923
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification and biochemical characterization of a eukaryotic-type serine/threonine kinase and its cognate phosphatase in Streptococcus pyogenes: their biological functions and substrate identification.
    Jin H; Pancholi V
    J Mol Biol; 2006 Apr; 357(5):1351-72. PubMed ID: 16487973
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The human CL100 gene encodes a Tyr/Thr-protein phosphatase which potently and specifically inactivates MAP kinase and suppresses its activation by oncogenic ras in Xenopus oocyte extracts.
    Alessi DR; Smythe C; Keyse SM
    Oncogene; 1993 Jul; 8(7):2015-20. PubMed ID: 8390041
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fluorogenic substrates for assay of chymosin.
    Starovoitova VV; Filippova IY; Lysogorskaya EN; Oksenoit ES; Lavrenova GI
    Biochemistry (Mosc); 2000 Jun; 65(6):713-7. PubMed ID: 10887292
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An improved fluorogenic substrate for the detection of alkaline phosphatase activity.
    Park J; Kim Y
    Bioorg Med Chem Lett; 2013 Apr; 23(8):2332-5. PubMed ID: 23489631
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of a highly selective fluorescence probe for alkaline phosphatase.
    Kawaguchi M; Hanaoka K; Komatsu T; Terai T; Nagano T
    Bioorg Med Chem Lett; 2011 Sep; 21(17):5088-91. PubMed ID: 21482108
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Protein phosphatases: structures and implications.
    Jia Z
    Biochem Cell Biol; 1997; 75(1):17-26. PubMed ID: 9192069
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Peptide microarray for high-throughput determination of phosphatase specificity and biology.
    Sun H; Lu CH; Uttamchandani M; Xia Y; Liou YC; Yao SQ
    Angew Chem Int Ed Engl; 2008; 47(9):1698-702. PubMed ID: 18203220
    [No Abstract]   [Full Text] [Related]  

  • 29. Protein serine/threonine phosphatases: life, death, and sleeping.
    Gallego M; Virshup DM
    Curr Opin Cell Biol; 2005 Apr; 17(2):197-202. PubMed ID: 15780597
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In-Gel Protein Phosphatase Assay Using Fluorogenic Substrates.
    Kameshita I; Sueyoshi N; Ishida A
    Methods Mol Biol; 2018; 1853():165-172. PubMed ID: 30097942
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The first nonradioactive fluorescence assay for phosphatidylglycerol:prolipoprotein diacylglyceryl transferase that initiates bacterial lipoprotein biosynthesis.
    Sundaram S; Banerjee S; Sankaran K
    Anal Biochem; 2012 Apr; 423(1):163-70. PubMed ID: 22342619
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fluorogenic assay of alkaline phosphatase activity based on the modulation of excited-state intramolecular proton transfer.
    Park J; Helal A; Kim HS; Kim Y
    Bioorg Med Chem Lett; 2012 Sep; 22(17):5541-4. PubMed ID: 22853994
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A selective Seoul-Fluor-based bioprobe, SfBP, for vaccinia H1-related phosphatase--a dual-specific protein tyrosine phosphatase.
    Jeong MS; Kim E; Kang HJ; Choi EJ; Cho AR; Chung SJ; Park SB
    Chem Commun (Camb); 2012 Jul; 48(52):6553-5. PubMed ID: 22622190
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In-gel phosphatase assay using fluorogenic and radioactive substrates.
    Kameshita I
    Curr Protoc Protein Sci; 2011 Aug; Chapter 13():Unit13.12. PubMed ID: 21842466
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Site-directed double fluorescent tagging of human renin and collagenase (MMP-1) substrate peptides using the periodate oxidation of N-terminal serine. An apparently general strategy for provision of energy-transfer substrates for proteases.
    Geoghegan KF; Emery MJ; Martin WH; McColl AS; Daumy GO
    Bioconjug Chem; 1993; 4(6):537-44. PubMed ID: 8305522
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Specificity profiling of protein phosphatases toward phosphoseryl and phosphothreonyl peptides.
    Xiao Q; Luechapanichkul R; Zhai Y; Pei D
    J Am Chem Soc; 2013 Jul; 135(26):9760-7. PubMed ID: 23758517
    [TBL] [Abstract][Full Text] [Related]  

  • 37. pCAP-based peptide substrates: the new tool in the box of tyrosine phosphatase assays.
    Stanford SM; Krishnamurthy D; Kulkarni RA; Karver CE; Bruenger E; Walker LM; Ma CT; Chung TD; Sergienko E; Bottini N; Barrios AM
    Methods; 2014 Jan; 65(2):165-74. PubMed ID: 23886911
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A nonhydrolyzable analogue of phosphotyrosine, and related aryloxymethano- and aryloxyethano-phosphonic acids as motifs for inhibition of phosphatases.
    Iyer S; Younker JM; Czyryca PG; Hengge AC
    Bioorg Med Chem Lett; 2004 Dec; 14(23):5931-5. PubMed ID: 15501071
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A self-immobilizing and fluorogenic unnatural amino acid that mimics phosphotyrosine.
    Ge J; Li L; Yao SQ
    Chem Commun (Camb); 2011 Oct; 47(39):10939-41. PubMed ID: 21909540
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phosphatase high-throughput screening assay design and selection.
    Sergienko EA
    Methods Mol Biol; 2013; 1053():7-25. PubMed ID: 23860645
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.