BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

404 related articles for article (PubMed ID: 20359512)

  • 1. Electrochemically controlled drug delivery based on intrinsically conducting polymers.
    Svirskis D; Travas-Sejdic J; Rodgers A; Garg S
    J Control Release; 2010 Aug; 146(1):6-15. PubMed ID: 20359512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimising the incorporation and release of a neurotrophic factor using conducting polypyrrole.
    Thompson BC; Moulton SE; Ding J; Richardson R; Cameron A; O'Leary S; Wallace GG; Clark GM
    J Control Release; 2006 Dec; 116(3):285-94. PubMed ID: 17112619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drug delivery systems based on intrinsically conducting polymers.
    Puiggalí-Jou A; Del Valle LJ; Alemán C
    J Control Release; 2019 Sep; 309():244-264. PubMed ID: 31351927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of nano-tentacle polypyrrole with pseudo-molecular template for ATP incorporation.
    Xiao Y; Che J; Li CM; Sun CQ; Chua YT; Lee VS; Luong JH
    J Biomed Mater Res A; 2007 Mar; 80(4):925-31. PubMed ID: 17072847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Research on intelligent controlled drug delivery with polymer].
    Zhang Z; Tang C; Chen H; Shan L; Wan C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Feb; 23(1):205-8, 224. PubMed ID: 16532842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pharmaceutically used polymers: principles, structures, and applications of pharmaceutical delivery systems.
    Khandare J; Haag R
    Handb Exp Pharmacol; 2010; (197):221-50. PubMed ID: 20217532
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of polymeric microparticles for drug delivery by soft lithography.
    Guan J; Ferrell N; James Lee L; Hansford DJ
    Biomaterials; 2006 Jul; 27(21):4034-41. PubMed ID: 16574217
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nano and microparticles as controlled drug delivery devices.
    Ravi Kumar MN
    J Pharm Pharm Sci; 2000; 3(2):234-58. PubMed ID: 10994037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mesoporous silica nanoparticles for intracellular controlled drug delivery.
    Vivero-Escoto JL; Slowing II; Trewyn BG; Lin VS
    Small; 2010 Sep; 6(18):1952-67. PubMed ID: 20690133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silicon-polymer hybrid materials for drug delivery.
    McInnes SJ; Voelcker NH
    Future Med Chem; 2009 Sep; 1(6):1051-74. PubMed ID: 21425994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polymer blends for controlled release coatings.
    Siepmann F; Siepmann J; Walther M; MacRae RJ; Bodmeier R
    J Control Release; 2008 Jan; 125(1):1-15. PubMed ID: 18022722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent developments in biodegradable synthetic polymers.
    Gunatillake P; Mayadunne R; Adhikari R
    Biotechnol Annu Rev; 2006; 12():301-47. PubMed ID: 17045198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stimuli-responsive polymers and their applications in drug delivery.
    Bawa P; Pillay V; Choonara YE; du Toit LC
    Biomed Mater; 2009 Apr; 4(2):022001. PubMed ID: 19261988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel self-assembled core-shell nanoparticles based on crystalline amorphous moieties of aliphatic copolyesters for efficient controlled drug release.
    Papadimitriou S; Bikiaris D
    J Control Release; 2009 Sep; 138(2):177-84. PubMed ID: 19446585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecularly imprinted materials as advanced excipients for drug delivery systems.
    Alvarez-Lorenzo C; Concheiro A
    Biotechnol Annu Rev; 2006; 12():225-68. PubMed ID: 17045196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conducting polymers for neural interfaces: challenges in developing an effective long-term implant.
    Green RA; Lovell NH; Wallace GG; Poole-Warren LA
    Biomaterials; 2008; 29(24-25):3393-9. PubMed ID: 18501423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile synthesis of hierarchical conducting polymer nanotubes derived from nanofibers and their application for controlled drug release.
    Han J; Wang L; Guo R
    Macromol Rapid Commun; 2011 May; 32(9-10):729-35. PubMed ID: 21442681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication and characterization of a smart drug delivery system: microsphere in hydrogel.
    Zhang XZ; Jo Lewis P; Chu CC
    Biomaterials; 2005 Jun; 26(16):3299-309. PubMed ID: 15603825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel functional hyperbranched polyether polyols as prospective drug delivery systems.
    Tziveleka LA; Kontoyianni C; Sideratou Z; Tsiourvas D; Paleos CM
    Macromol Biosci; 2006 Feb; 6(2):161-9. PubMed ID: 16456875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and evaluation of biodegradable microspheres containing a new potent osteogenic compound and new synthetic polymers for sustained release.
    Umeki N; Sato T; Harada M; Takeda J; Saito S; Iwao Y; Itai S
    Int J Pharm; 2010 Jun; 392(1-2):42-50. PubMed ID: 20227474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.