These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 20359687)

  • 21. Improved intralimb coordination in people with incomplete spinal cord injury following training with body weight support and electrical stimulation.
    Field-Fote EC; Tepavac D
    Phys Ther; 2002 Jul; 82(7):707-15. PubMed ID: 12088467
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Gait training in incomplete spinal cord injuries with body weight support].
    Alcobendas-Maestro M; López-Dolado E; Esclarín de Ruz A; Valdizán-Valledor MC
    Rev Neurol; 2004 Sep 1-15; 39(5):406-10. PubMed ID: 15378450
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Robot-assisted Therapy for the Upper Limb after Cervical Spinal Cord Injury.
    Yozbatiran N; Francisco GE
    Phys Med Rehabil Clin N Am; 2019 May; 30(2):367-384. PubMed ID: 30954153
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modulation of locomotor-like EMG activity in subjects with complete and incomplete spinal cord injury.
    Dobkin BH; Harkema S; Requejo P; Edgerton VR
    J Neurol Rehabil; 1995; 9(4):183-90. PubMed ID: 11539274
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Changes in supraspinal activation patterns following robotic locomotor therapy in motor-incomplete spinal cord injury.
    Winchester P; McColl R; Querry R; Foreman N; Mosby J; Tansey K; Williamson J
    Neurorehabil Neural Repair; 2005 Dec; 19(4):313-24. PubMed ID: 16263963
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of peak cardiopulmonary performance parameters during robotics-assisted treadmill exercise and arm crank ergometry in incomplete spinal cord injury.
    Jack LP; Purcell M; Allan DB; Hunt KJ
    Technol Health Care; 2010; 18(4-5):285-96. PubMed ID: 21209477
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Body weight supported treadmill training at very low treatment frequency for a young adult with incomplete cervical spinal cord injury.
    Young DL; Wallmann HW; Poole I; Threlkeld AJ
    NeuroRehabilitation; 2009; 25(4):261-70. PubMed ID: 20037219
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spinal cord control of movement: implications for locomotor rehabilitation following spinal cord injury.
    Field-Fote EC
    Phys Ther; 2000 May; 80(5):477-84. PubMed ID: 10792858
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The metabolic cost of passive walking during robotics-assisted treadmill exercise.
    Jack LP; Purcell M; Allan DB; Hunt KJ
    Technol Health Care; 2011; 19(1):21-7. PubMed ID: 21248409
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Facilitating Weight Shifting During Treadmill Training Improves Walking Function in Humans With Spinal Cord Injury: A Randomized Controlled Pilot Study.
    Wu M; Kim J; Wei F
    Am J Phys Med Rehabil; 2018 Aug; 97(8):585-592. PubMed ID: 29547448
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Weight-supported treadmill versus over-ground training after spinal cord injury: from a physical therapist's point of view.
    van Hedel HJ
    Phys Ther; 2006 Oct; 86(10):1444-5; author reply 1445-7. PubMed ID: 17012649
    [No Abstract]   [Full Text] [Related]  

  • 32. Computerized visual feedback: an adjunct to robotic-assisted gait training.
    Banz R; Bolliger M; Colombo G; Dietz V; Lünenburger L
    Phys Ther; 2008 Oct; 88(10):1135-45. PubMed ID: 18772279
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Body weight-supported treadmill training in chronic incomplete spinal cord injury: a pilot study evaluating functional health status and quality of life.
    Effing TW; van Meeteren NL; van Asbeck FW; Prevo AJ
    Spinal Cord; 2006 May; 44(5):287-96. PubMed ID: 16186857
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A robotic device for studying rodent locomotion after spinal cord injury.
    Nessler JA; Timoszyk W; Merlo M; Emken JL; Minakata K; Roy RR; de Leon RD; Edgerton VR; Reinkensmeyer DJ
    IEEE Trans Neural Syst Rehabil Eng; 2005 Dec; 13(4):497-506. PubMed ID: 16425832
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quadriplegia from spinal cord injury in muscular dystrophy.
    Bloom KK; Freed MM
    Arch Phys Med Rehabil; 1989 Aug; 70(8):642-3. PubMed ID: 2764695
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Arm-cranking exercise assisted by Functional Electrical Stimulation in C6 tetraplegia: a pilot study.
    Coupaud S; Gollee H; Hunt KJ; Fraser MH; Allan DB; McLean AN
    Technol Health Care; 2008; 16(6):415-27. PubMed ID: 19212037
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Three exercise paradigms differentially improve sensory recovery after spinal cord contusion in rats.
    Hutchinson KJ; Gómez-Pinilla F; Crowe MJ; Ying Z; Basso DM
    Brain; 2004 Jun; 127(Pt 6):1403-14. PubMed ID: 15069022
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Giving your outpatient rehabilitation program a lift: the financial feasibility of body weight supported treadmill training.
    Studer M
    J Neurol Phys Ther; 2007 Jun; 31(2):54-5. PubMed ID: 17558357
    [No Abstract]   [Full Text] [Related]  

  • 39. Sensory supported FES control in gait training of incomplete spinal cord injury persons.
    Cikajlo I; Matjacić Z; Bajd T; Futami R
    Artif Organs; 2005 Jun; 29(6):459-61. PubMed ID: 15926982
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Weight-supported treadmill vs over-ground training for walking after acute incomplete SCI.
    Wernig A
    Neurology; 2006 Nov; 67(10):1900; author reply 1900. PubMed ID: 17130441
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.