These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 20359767)

  • 1. Automated segmentation of tissue images for computerized IHC analysis.
    Di Cataldo S; Ficarra E; Acquaviva A; Macii E
    Comput Methods Programs Biomed; 2010 Oct; 100(1):1-15. PubMed ID: 20359767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated segmentation of cells with IHC membrane staining.
    Ficarra E; Di Cataldo S; Acquaviva A; Macii E
    IEEE Trans Biomed Eng; 2011 May; 58(5):1421-9. PubMed ID: 21245003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supervised learning-based cell image segmentation for p53 immunohistochemistry.
    Mao KZ; Zhao P; Tan PH
    IEEE Trans Biomed Eng; 2006 Jun; 53(6):1153-63. PubMed ID: 16761842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved automatic detection and segmentation of cell nuclei in histopathology images.
    Al-Kofahi Y; Lassoued W; Lee W; Roysam B
    IEEE Trans Biomed Eng; 2010 Apr; 57(4):841-52. PubMed ID: 19884070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Color-based tumor tissue segmentation for the automated estimation of oral cancer parameters.
    Sun YN; Wang YY; Chang SC; Wu LW; Tsai ST
    Microsc Res Tech; 2010 Jan; 73(1):5-13. PubMed ID: 19526523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrated approach for segmentation of 3-D confocal images of a tissue specimen.
    Adiga PS
    Microsc Res Tech; 2001 Aug; 54(4):260-70. PubMed ID: 11514982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An image analysis-based approach for automated counting of cancer cell nuclei in tissue sections.
    Loukas CG; Wilson GD; Vojnovic B; Linney A
    Cytometry A; 2003 Sep; 55(1):30-42. PubMed ID: 12938186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic segmentation of diatom images for classification.
    Jalba AC; Wilkinson MH; Roerdink JB
    Microsc Res Tech; 2004 Sep; 65(1-2):72-85. PubMed ID: 15570583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast unsupervised nuclear segmentation and classification scheme for automatic allred cancer scoring in immunohistochemical breast tissue images.
    Mouelhi A; Rmili H; Ali JB; Sayadi M; Doghri R; Mrad K
    Comput Methods Programs Biomed; 2018 Oct; 165():37-51. PubMed ID: 30337080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Achieving the way for automated segmentation of nuclei in cancer tissue images through morphology-based approach: a quantitative evaluation.
    Di Cataldo S; Ficarra E; Acquaviva A; Macii E
    Comput Med Imaging Graph; 2010 Sep; 34(6):453-61. PubMed ID: 20060681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-spectral brain tissue segmentation using automatically trained k-Nearest-Neighbor classification.
    Vrooman HA; Cocosco CA; van der Lijn F; Stokking R; Ikram MA; Vernooij MW; Breteler MM; Niessen WJ
    Neuroimage; 2007 Aug; 37(1):71-81. PubMed ID: 17572111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fully automated segmentation and morphometrical analysis of muscle fiber images.
    Kim YJ; Brox T; Feiden W; Weickert J
    Cytometry A; 2007 Jan; 71(1):8-15. PubMed ID: 17211880
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance-based classifier combination in atlas-based image segmentation using expectation-maximization parameter estimation.
    Rohlfing T; Russakoff DB; Maurer CR
    IEEE Trans Med Imaging; 2004 Aug; 23(8):983-94. PubMed ID: 15338732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An improved procedure to quantify tumour vascularity using true colour image analysis. Comparison with the manual hot-spot procedure in a human melanoma xenograft model.
    van der Laak JA; Westphal JR; Schalkwijk LJ; Pahlplatz MM; Ruiter DJ; de Waal RM; de Wilde PC
    J Pathol; 1998 Feb; 184(2):136-43. PubMed ID: 9602703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated nuclear segmentation in the determination of the Ki-67 labeling index in meningiomas.
    Kim YJ; Romeike BF; Uszkoreit J; Feiden W
    Clin Neuropathol; 2006; 25(2):67-73. PubMed ID: 16550739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An accurate and robust method for unsupervised assessment of abdominal fat by MRI.
    Positano V; Gastaldelli A; Sironi AM; Santarelli MF; Lombardi M; Landini L
    J Magn Reson Imaging; 2004 Oct; 20(4):684-9. PubMed ID: 15390229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An automated procedure to properly handle digital images in large scale tissue microarray experiments.
    Dell'Anna R; Demichelis F; Barbareschi M; Sboner A
    Comput Methods Programs Biomed; 2005 Sep; 79(3):197-208. PubMed ID: 15979757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance evaluation of maximal separation techniques in immunohistochemical scoring of tissue images.
    Hameed KA; Banumathi A; Ulaganathan G
    Micron; 2015 Dec; 79():29-35. PubMed ID: 26313715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated quantification of nuclear immunohistochemical markers with different complexity.
    López C; Lejeune M; Salvadó MT; Escrivà P; Bosch R; Pons LE; Alvaro T; Roig J; Cugat X; Baucells J; Jaén J
    Histochem Cell Biol; 2008 Mar; 129(3):379-87. PubMed ID: 18172664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and evaluation of a semiautomatic segmentation method for the estimation of LV parameters on cine MR images.
    Mazonakis M; Grinias E; Pagonidis K; Tziritas G; Damilakis J
    Phys Med Biol; 2010 Feb; 55(4):1127-40. PubMed ID: 20107252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.