These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
413 related articles for article (PubMed ID: 20359864)
1. Experimental analysis of the characteristics of artificial vocal folds. Misun V; Svancara P; Vasek M J Voice; 2011 May; 25(3):308-18. PubMed ID: 20359864 [TBL] [Abstract][Full Text] [Related]
2. Measurement of vocal fold collision forces during phonation: methods and preliminary data. Gunter HE; Howe RD; Zeitels SM; Kobler JB; Hillman RE J Speech Lang Hear Res; 2005 Jun; 48(3):567-76. PubMed ID: 16197273 [TBL] [Abstract][Full Text] [Related]
3. Vocal fold vibration and voice source aperiodicity in 'dist' tones: a study of a timbral ornament in rock singing. Borch DZ; Sundberg J; Lindestad PA; Thalén M Logoped Phoniatr Vocol; 2004; 29(4):147-53. PubMed ID: 15764208 [TBL] [Abstract][Full Text] [Related]
4. Voice source characteristics in Mongolian "throat singing" studied with high-speed imaging technique, acoustic spectra, and inverse filtering. Lindestad PA; Södersten M; Merker B; Granqvist S J Voice; 2001 Mar; 15(1):78-85. PubMed ID: 12269637 [TBL] [Abstract][Full Text] [Related]
5. Optical reconstruction of high-speed surface dynamics in an uncontrollable environment. Luegmair G; Kniesburges S; Zimmermann M; Sutor A; Eysholdt U; Döllinger M IEEE Trans Med Imaging; 2010 Dec; 29(12):1979-91. PubMed ID: 21118756 [TBL] [Abstract][Full Text] [Related]
6. High-speed video analysis of the phonation onset, with an application to the diagnosis of functional dysphonias. Braunschweig T; Flaschka J; Schelhorn-Neise P; Döllinger M Med Eng Phys; 2008 Jan; 30(1):59-66. PubMed ID: 17317268 [TBL] [Abstract][Full Text] [Related]
7. Noninvasive monitoring of vocal fold vertical vibration using the acoustic Doppler effect. Tao C; Jiang JJ; Wu D; Liu X; Chodara A J Voice; 2012 Nov; 26(6):677-81. PubMed ID: 22521534 [TBL] [Abstract][Full Text] [Related]
8. Aerodynamics of the human larynx during vocal fold vibration. Plant RL Laryngoscope; 2005 Dec; 115(12):2087-100. PubMed ID: 16369149 [TBL] [Abstract][Full Text] [Related]
9. Regulation of glottal closure and airflow in a three-dimensional phonation model: implications for vocal intensity control. Zhang Z J Acoust Soc Am; 2015 Feb; 137(2):898-910. PubMed ID: 25698022 [TBL] [Abstract][Full Text] [Related]
10. Using the relaxation oscillations principle for simple phonation modeling. Garrel R; Scherer R; Nicollas R; Giovanni A; Ouaknine M J Voice; 2008 Jul; 22(4):385-98. PubMed ID: 17280814 [TBL] [Abstract][Full Text] [Related]
11. High-speed registration of phonation-related glottal area variation during artificial lengthening of the vocal tract. Laukkanen AM; Pulakka H; Alku P; Vilkman E; Hertegård S; Lindestad PA; Larsson H; Granqvist S Logoped Phoniatr Vocol; 2007; 32(4):157-64. PubMed ID: 17917980 [TBL] [Abstract][Full Text] [Related]
12. Effect of source-tract acoustical coupling on the oscillation onset of the vocal folds. Lucero JC; Lourenço K; Hermant N; Van Hirtum A; Pelorson X J Acoust Soc Am; 2012 Jul; 132(1):403-11. PubMed ID: 22779487 [TBL] [Abstract][Full Text] [Related]
13. Shortening of the front vibrating part of the vocal folds in phonation. Pesák J; Jindra P Folia Phoniatr Logop; 2005; 57(1):1-8. PubMed ID: 15655336 [TBL] [Abstract][Full Text] [Related]
14. Vibration parameter extraction from endoscopic image series of the vocal folds. Döllinger M; Hoppe U; Hettlich F; Lohscheller J; Schuberth S; Eysholdt U IEEE Trans Biomed Eng; 2002 Aug; 49(8):773-81. PubMed ID: 12148815 [TBL] [Abstract][Full Text] [Related]
15. A new instrument for intraoperative assessment of individual vocal folds. Heaton JT; Kobler JB; Hillman RE; Zeitels SM Laryngoscope; 2005 Jul; 115(7):1223-9. PubMed ID: 15995511 [TBL] [Abstract][Full Text] [Related]
16. Indirect assessment of the contribution of subglottal air pressure and vocal-fold tension to changes of fundamental frequency in English. Monsen RB; Engebretson AM; Vemula NR J Acoust Soc Am; 1978 Jul; 64(1):65-80. PubMed ID: 712003 [TBL] [Abstract][Full Text] [Related]
17. [Cellular, extracellular and histological analysis of the vocal folds: correlation between structure and function]. Dubois MD; Martin Ch; Prades JM Rev Laryngol Otol Rhinol (Bord); 2007; 128(5):267-71. PubMed ID: 20387371 [TBL] [Abstract][Full Text] [Related]
18. Validation of theoretical models of phonation threshold pressure with data from a vocal fold mechanical replica. Lucero JC; Van Hirtum A; Ruty N; Cisonni J; Pelorson X J Acoust Soc Am; 2009 Feb; 125(2):632-5. PubMed ID: 19206840 [TBL] [Abstract][Full Text] [Related]
19. Glottography, the electrophysiological investigation of phonatory biomechanics. Kitzing P Acta Otorhinolaryngol Belg; 1986; 40(6):863-78. PubMed ID: 3551483 [TBL] [Abstract][Full Text] [Related]
20. Dynamic MRI of larynx and vocal fold vibrations in normal phonation. Ahmad M; Dargaud J; Morin A; Cotton F J Voice; 2009 Mar; 23(2):235-9. PubMed ID: 18082366 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]