BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 20359938)

  • 1. Optimisation of orthopaedic implant design using statistical shape space analysis based on level sets.
    Kozic N; Weber S; Büchler P; Lutz C; Reimers N; González Ballester MA; Reyes M
    Med Image Anal; 2010 Jun; 14(3):265-75. PubMed ID: 20359938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Joint optimization of segmentation and shape prior from level-set-based statistical shape model, and its application to the automated segmentation of abdominal organs.
    Saito A; Nawano S; Shimizu A
    Med Image Anal; 2016 Feb; 28():46-65. PubMed ID: 26716720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Statistical model based shape prediction from a combination of direct observations and various surrogates: application to orthopaedic research.
    Blanc R; Seiler C; Székely G; Nolte LP; Reyes M
    Med Image Anal; 2012 Aug; 16(6):1156-66. PubMed ID: 22687954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of the individual fracture risk of the proximal femur by using statistical appearance models.
    Schuler B; Fritscher KD; Kuhn V; Eckstein F; Link TM; Schubert R
    Med Phys; 2010 Jun; 37(6):2560-71. PubMed ID: 20632568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shape analysis using a point-based statistical shape model built on correspondence probabilities.
    Hufnagel H; Pennec X; Ehrhardt J; Handels H; Ayache N
    Med Image Comput Comput Assist Interv; 2007; 10(Pt 1):959-67. PubMed ID: 18051151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validation of bone segmentation and improved 3-D registration using contour coherency in CT data.
    Wang LI; Greenspan M; Ellis R
    IEEE Trans Med Imaging; 2006 Mar; 25(3):324-34. PubMed ID: 16524088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conditional variability of statistical shape models based on surrogate variables.
    Blanc R; Reyes M; Seiler C; Székely G
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 2):84-91. PubMed ID: 20426099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated segmentation of the femur and pelvis from 3D CT data of diseased hip using hierarchical statistical shape model of joint structure.
    Yokota F; Okada T; Takao M; Sugano N; Tada Y; Sato Y
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 2):811-8. PubMed ID: 20426186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Liver segmentation using automatically defined patient specific B-spline surface models.
    Song Y; Bulpitt AJ; Brodlie KW
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 2):43-50. PubMed ID: 20426094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Model-based segmentation using graph representations.
    Seghers D; Hermans J; Loeckx D; Maes F; Vandermeulen D; Suetens P
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 1):393-400. PubMed ID: 18979771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validation and improved registration of bone segmentation using contour coherency.
    Greenspan M; Wang LI; Ellis R
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():244-7. PubMed ID: 17946808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Minimal shape and intensity cost path segmentation.
    Seghers D; Loeckx D; Maes F; Vandermeulen D; Suetens P
    IEEE Trans Med Imaging; 2007 Aug; 26(8):1115-29. PubMed ID: 17695131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A probabilistic framework based on hidden markov model for fiducial identification in image-guided radiation treatments.
    Mu Z; Fu D; Kuduvalli G
    IEEE Trans Med Imaging; 2008 Sep; 27(9):1288-300. PubMed ID: 18753044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A 4D statistical shape model for automated segmentation of lungs with large tumors.
    Wilms M; Ehrhardt J; Handels H
    Med Image Comput Comput Assist Interv; 2012; 15(Pt 2):347-54. PubMed ID: 23286067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hierarchical shape statistical model for segmentation of lung fields in chest radiographs.
    Shi Y; Shen D
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 1):417-24. PubMed ID: 18979774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A probabilistic model for automatic segmentation of the esophagus in 3-D CT scans.
    Feulner J; Zhou SK; Hammon M; Seifert S; Huber M; Comaniciu D; Hornegger J; Cavallaro A
    IEEE Trans Med Imaging; 2011 Jun; 30(6):1252-64. PubMed ID: 21303741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A homotopy-based sparse representation for fast and accurate shape prior modeling in liver surgical planning.
    Wang G; Zhang S; Xie H; Metaxas DN; Gu L
    Med Image Anal; 2015 Jan; 19(1):176-86. PubMed ID: 25461336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative vertebral morphometry using neighbor-conditional shape models.
    de Bruijne M; Lund MT; Tankó LB; Pettersen PC; Nielsen M
    Med Image Anal; 2007 Oct; 11(5):503-12. PubMed ID: 17720611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Semi-automated segmentation and visualisation of outer bone cortex from medical images.
    Gelaude F; Vander Sloten J; Lauwers B
    Comput Methods Biomech Biomed Engin; 2006 Feb; 9(1):65-77. PubMed ID: 16880158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Left ventricle segmentation using diffusion wavelets and boosting.
    Essafi S; Langs G; Paragios N
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 2):919-26. PubMed ID: 20426199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.