These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 20361049)

  • 1. Investigating homology between proteins using energetic profiles.
    Wrabl JO; Hilser VJ
    PLoS Comput Biol; 2010 Mar; 6(3):e1000722. PubMed ID: 20361049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamic propensities of amino acids in the native state ensemble: implications for fold recognition.
    Wrabl JO; Larson SA; Hilser VJ
    Protein Sci; 2001 May; 10(5):1032-45. PubMed ID: 11316884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Entropy reduction effect imposed by hydrogen bond formation on protein folding cooperativity: evidence from a hydrophobic minimalist model.
    Barbosa MA; Garcia LG; Pereira de Araújo AF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 1):051903. PubMed ID: 16383641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cross-over between discrete and continuous protein structure space: insights into automatic classification and networks of protein structures.
    Pascual-García A; Abia D; Ortiz AR; Bastolla U
    PLoS Comput Biol; 2009 Mar; 5(3):e1000331. PubMed ID: 19325884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. COREX/BEST server: a web browser-based program that calculates regional stability variations within protein structures.
    Vertrees J; Barritt P; Whitten S; Hilser VJ
    Bioinformatics; 2005 Aug; 21(15):3318-9. PubMed ID: 15923205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Covariation analysis of local amino acid sequences in recurrent protein local structures.
    Wang LY
    J Bioinform Comput Biol; 2005 Dec; 3(6):1391-409. PubMed ID: 16374913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recognition of analogous and homologous protein folds: analysis of sequence and structure conservation.
    Russell RB; Saqi MA; Sayle RA; Bates PA; Sternberg MJ
    J Mol Biol; 1997 Jun; 269(3):423-39. PubMed ID: 9199410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Natural selection for kinetic stability is a likely origin of correlations between mutational effects on protein energetics and frequencies of amino acid occurrences in sequence alignments.
    Godoy-Ruiz R; Ariza F; Rodriguez-Larrea D; Perez-Jimenez R; Ibarra-Molero B; Sanchez-Ruiz JM
    J Mol Biol; 2006 Oct; 362(5):966-78. PubMed ID: 16935299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A three-state prediction of single point mutations on protein stability changes.
    Capriotti E; Fariselli P; Rossi I; Casadio R
    BMC Bioinformatics; 2008 Mar; 9 Suppl 2(Suppl 2):S6. PubMed ID: 18387208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Motif-based protein ranking by network propagation.
    Kuang R; Weston J; Noble WS; Leslie C
    Bioinformatics; 2005 Oct; 21(19):3711-8. PubMed ID: 16076885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of the probabilities for evolutionary structural changes in protein folds.
    Viksna J; Gilbert D
    Bioinformatics; 2007 Apr; 23(7):832-41. PubMed ID: 17282999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting protein stability changes from sequences using support vector machines.
    Capriotti E; Fariselli P; Calabrese R; Casadio R
    Bioinformatics; 2005 Sep; 21 Suppl 2():ii54-8. PubMed ID: 16204125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Folding behavior of model proteins with weak energetic frustration.
    Locker CR; Hernandez R
    J Chem Phys; 2004 Jun; 120(23):11292-303. PubMed ID: 15268157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inferring repeat-protein energetics from evolutionary information.
    Espada R; Parra RG; Mora T; Walczak AM; Ferreiro DU
    PLoS Comput Biol; 2017 Jun; 13(6):e1005584. PubMed ID: 28617812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Joint evolutionary trees: a large-scale method to predict protein interfaces based on sequence sampling.
    Engelen S; Trojan LA; Sacquin-Mora S; Lavery R; Carbone A
    PLoS Comput Biol; 2009 Jan; 5(1):e1000267. PubMed ID: 19165315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequence variability of proteins evolutionarily constrained by solution-thermodynamic function.
    Braun FN
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jan; 69(1 Pt 1):011903. PubMed ID: 14995643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of 3D atomic similarities and their use in the discrimination of small molecule protein-binding sites.
    Najmanovich R; Kurbatova N; Thornton J
    Bioinformatics; 2008 Aug; 24(16):i105-11. PubMed ID: 18689810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An integrated approach to the analysis and modeling of protein sequences and structures. III. A comparative study of sequence conservation in protein structural families using multiple structural alignments.
    Yang AS; Honig B
    J Mol Biol; 2000 Aug; 301(3):691-711. PubMed ID: 10966778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient remote homology detection using local structure.
    Hou Y; Hsu W; Lee ML; Bystroff C
    Bioinformatics; 2003 Nov; 19(17):2294-301. PubMed ID: 14630658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MACHOS: Markov clusters of homologous subsequences.
    Wong S; Ragan MA
    Bioinformatics; 2008 Jul; 24(13):i77-85. PubMed ID: 18586748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.