BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 20361191)

  • 1. Protein profile analysis of salt-responsive proteins in leaves and roots in two cultivars of creeping bentgrass differing in salinity tolerance.
    Xu C; Sibicky T; Huang B
    Plant Cell Rep; 2010 Jun; 29(6):595-615. PubMed ID: 20361191
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential proteomic responses to water stress induced by PEG in two creeping bentgrass cultivars differing in stress tolerance.
    Xu C; Huang B
    J Plant Physiol; 2010 Nov; 167(17):1477-85. PubMed ID: 20674080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterologous expression of Arabidopsis H+-pyrophosphatase enhances salt tolerance in transgenic creeping bentgrass (Agrostis stolonifera L.).
    Li Z; Baldwin CM; Hu Q; Liu H; Luo H
    Plant Cell Environ; 2010 Feb; 33(2):272-89. PubMed ID: 19930128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiological and proteomic characterization of salt tolerance in a mangrove plant, Bruguiera gymnorrhiza (L.) Lam.
    Zhu Z; Chen J; Zheng HL
    Tree Physiol; 2012 Nov; 32(11):1378-88. PubMed ID: 23100256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chitosan regulates metabolic balance, polyamine accumulation, and Na
    Geng W; Li Z; Hassan MJ; Peng Y
    BMC Plant Biol; 2020 Nov; 20(1):506. PubMed ID: 33148164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiological and metabolic effects of 5-aminolevulinic acid for mitigating salinity stress in creeping bentgrass.
    Yang Z; Chang Z; Sun L; Yu J; Huang B
    PLoS One; 2014; 9(12):e116283. PubMed ID: 25551443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Screening for salt-responsive proteins in two contrasting alfalfa cultivars using a comparative proteome approach.
    Rahman MA; Alam I; Kim YG; Ahn NY; Heo SH; Lee DG; Liu G; Lee BH
    Plant Physiol Biochem; 2015 Apr; 89():112-22. PubMed ID: 25743099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential proteomic response to heat stress in thermal Agrostis scabra and heat-sensitive Agrostis stolonifera.
    Xu C; Huang B
    Physiol Plant; 2010 Jun; 139(2):192-204. PubMed ID: 20113435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative proteomic analysis of salt-responsive proteins in canola roots by 2-DE and MALDI-TOF MS.
    Kholghi M; Toorchi M; Bandehagh A; Ostendorp A; Ostendorp S; Hanhart P; Kehr J
    Biochim Biophys Acta Proteins Proteom; 2019 Mar; 1867(3):227-236. PubMed ID: 30611781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein accumulation in leaves and roots associated with improved drought tolerance in creeping bentgrass expressing an ipt gene for cytokinin synthesis.
    Merewitz EB; Gianfagna T; Huang B
    J Exp Bot; 2011 Nov; 62(15):5311-33. PubMed ID: 21831843
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photosynthesis, water use, and root viability under water stress as affected by expression of SAG12-ipt controlling cytokinin synthesis in Agrostis stolonifera.
    Merewitz EB; Gianfagna T; Huang B
    J Exp Bot; 2011 Jan; 62(1):383-95. PubMed ID: 20841349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of differentially expressed salt-responsive proteins in roots of two perennial grass species contrasting in salinity tolerance.
    Liu Y; Du H; He X; Huang B; Wang Z
    J Plant Physiol; 2012 Jan; 169(2):117-26. PubMed ID: 22070977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative proteomic analysis of early salt stress responsive proteins in roots and leaves of rice.
    Liu CW; Chang TS; Hsu YK; Wang AZ; Yen HC; Wu YP; Wang CS; Lai CC
    Proteomics; 2014 Aug; 14(15):1759-75. PubMed ID: 24841874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Salinity stress in roots of contrasting barley genotypes reveals time-distinct and genotype-specific patterns for defined proteins.
    Witzel K; Matros A; Strickert M; Kaspar S; Peukert M; Mühling KH; Börner A; Mock HP
    Mol Plant; 2014 Feb; 7(2):336-55. PubMed ID: 24004485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteomic analysis of salt-responsive proteins in oat roots (Avena sativa L.).
    Bai J; Liu J; Jiao W; Sa R; Zhang N; Jia R
    J Sci Food Agric; 2016 Aug; 96(11):3867-75. PubMed ID: 26689600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heat shock proteins in relation to heat stress tolerance of creeping bentgrass at different N levels.
    Wang K; Zhang X; Goatley M; Ervin E
    PLoS One; 2014; 9(7):e102914. PubMed ID: 25050702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differentially delayed root proteome responses to salt stress in sugar cane varieties.
    Pacheco CM; Pestana-Calsa MC; Gozzo FC; Mansur Custodio Nogueira RJ; Menossi M; Calsa T
    J Proteome Res; 2013 Dec; 12(12):5681-95. PubMed ID: 24251627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiology and proteome responses of two contrasting rice mutants and their wild type parent under salt stress conditions at the vegetative stage.
    Ghaffari A; Gharechahi J; Nakhoda B; Salekdeh GH
    J Plant Physiol; 2014 Jan; 171(1):31-44. PubMed ID: 24094368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteomic analysis of salt tolerance in sugar beet monosomic addition line M14.
    Yang L; Zhang Y; Zhu N; Koh J; Ma C; Pan Y; Yu B; Chen S; Li H
    J Proteome Res; 2013 Nov; 12(11):4931-50. PubMed ID: 23799291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiological and proteomic analysis of salinity tolerance in Puccinellia tenuiflora.
    Yu J; Chen S; Zhao Q; Wang T; Yang C; Diaz C; Sun G; Dai S
    J Proteome Res; 2011 Sep; 10(9):3852-70. PubMed ID: 21732589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.