These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 20361741)

  • 1. Biological semiconductor based on electrical percolation.
    Yang M; Bruck HA; Kostov Y; Rasooly A
    Anal Chem; 2010 May; 82(9):3567-72. PubMed ID: 20361741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrical percolation based biosensors.
    Bruck HA; Yang M; Kostov Y; Rasooly A
    Methods; 2013 Oct; 63(3):282-9. PubMed ID: 24041756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrical percolation-based biosensor for real-time direct detection of staphylococcal enterotoxin B (SEB).
    Yang M; Sun S; Bruck HA; Kostov Y; Rasooly A
    Biosens Bioelectron; 2010 Aug; 25(12):2573-8. PubMed ID: 20447819
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lab-on-a-chip for label free biological semiconductor analysis of staphylococcal enterotoxin B.
    Yang M; Sun S; Bruck HA; Kostov Y; Rasooly A
    Lab Chip; 2010 Oct; 10(19):2534-40. PubMed ID: 20668726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lab-On-a-Chip for carbon nanotubes based immunoassay detection of Staphylococcal Enterotoxin B (SEB).
    Yang M; Sun S; Kostov Y; Rasooly A
    Lab Chip; 2010 Apr; 10(8):1011-7. PubMed ID: 20358108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative detection of staphylococcal enterotoxin B by resonant acoustic profiling.
    Natesan M; Cooper MA; Tran JP; Rivera VR; Poli MA
    Anal Chem; 2009 May; 81(10):3896-902. PubMed ID: 19374426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon nanotubes based optical immunodetection of Staphylococcal Enterotoxin B (SEB) in food.
    Yang M; Kostov Y; Rasooly A
    Int J Food Microbiol; 2008 Sep; 127(1-2):78-83. PubMed ID: 18632175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conductometric immunosensors for the detection of staphylococcal enterotoxin B based bio-electrocalytic reaction on micro-comb electrodes.
    Chen ZG
    Bioprocess Biosyst Eng; 2008 Jun; 31(4):345-50. PubMed ID: 17943320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An immunoreactor-based competitive fluoroimmunoassay for monitoring staphylococcal enterotoxin B using bioconjugated quantum dots.
    Vinayaka AC; Thakur MS
    Analyst; 2012 Sep; 137(18):4343-8. PubMed ID: 22858836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Network single-walled carbon nanotube biosensors for fast and highly sensitive detection of proteins.
    Hu P; Zhang J; Wen Z; Zhang C
    Nanotechnology; 2011 Aug; 22(33):335502. PubMed ID: 21788691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single walled carbon nanotube-based junction biosensor for detection of Escherichia coli.
    Yamada K; Kim CT; Kim JH; Chung JH; Lee HG; Jun S
    PLoS One; 2014; 9(9):e105767. PubMed ID: 25233366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An ELISA Lab-on-a-Chip (ELISA-LOC).
    Rasooly A; Bruck HA; Kostov Y
    Methods Mol Biol; 2013; 949():451-71. PubMed ID: 23329460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AuNPs/CNOs/SWCNTs/chitosan-nanocomposite modified electrochemical sensor for the label-free detection of carcinoembryonic antigen.
    Rizwan M; Elma S; Lim SA; Ahmed MU
    Biosens Bioelectron; 2018 Jun; 107():211-217. PubMed ID: 29471282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interfacing glycosylated carbon-nanotube-network devices with living cells to detect dynamic secretion of biomolecules.
    Sudibya HG; Ma J; Dong X; Ng S; Li LJ; Liu XW; Chen P
    Angew Chem Int Ed Engl; 2009; 48(15):2723-6. PubMed ID: 19263455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of dispersion conditions of single-walled carbon nanotubes on the electrical characteristics of thin film network transistors.
    Barman SN; LeMieux MC; Baek J; Rivera R; Bao Z
    ACS Appl Mater Interfaces; 2010 Sep; 2(9):2672-8. PubMed ID: 20738099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analytical characterization of label-free immunosensor subsystems based on multi-walled carbon nanotube array-modified gold interface.
    Zahmatkeshan M; Ilkhani H; Paknejad M; Adel M; Sarkar S; Saber R
    Comb Chem High Throughput Screen; 2015; 18(1):83-8. PubMed ID: 25506800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biological bottom-up assembly of antibody nanotubes on patterned antigen arrays.
    Nuraje N; Banerjee IA; MacCuspie RI; Yu L; Matsui H
    J Am Chem Soc; 2004 Jul; 126(26):8088-9. PubMed ID: 15225029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antibody covalent immobilization on carbon nanotubes and assessment of antigen binding.
    Venturelli E; Fabbro C; Chaloin O; Ménard-Moyon C; Smulski CR; Da Ros T; Kostarelos K; Prato M; Bianco A
    Small; 2011 Aug; 7(15):2179-87. PubMed ID: 21608125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal conductivity measurements of semitransparent single-walled carbon nanotube films by a bolometric technique.
    Itkis ME; Borondics F; Yu A; Haddon RC
    Nano Lett; 2007 Apr; 7(4):900-4. PubMed ID: 17385930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metallic-semiconducting junctions create sensing hot-spots in carbon nanotube FET aptasensors near percolation.
    Thanihaichelvan M; Browning LA; Dierkes MP; Reyes RM; Kralicek AV; Carraher C; Marlow CA; Plank NOV
    Biosens Bioelectron; 2019 Apr; 130():408-413. PubMed ID: 30266423
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.