These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 20361757)

  • 1. Soft, highly conductive nanotube sponges and composites with controlled compressibility.
    Gui X; Cao A; Wei J; Li H; Jia Y; Li Z; Fan L; Wang K; Zhu H; Wu D
    ACS Nano; 2010 Apr; 4(4):2320-6. PubMed ID: 20361757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A facile route to isotropic conductive nanocomposites by direct polymer infiltration of carbon nanotube sponges.
    Gui X; Li H; Zhang L; Jia Y; Liu L; Li Z; Wei J; Wang K; Zhu H; Tang Z; Wu D; Cao A
    ACS Nano; 2011 Jun; 5(6):4276-83. PubMed ID: 21591806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tailoring percolating conductive networks of natural rubber composites for flexible strain sensors via a cellulose nanocrystal templated assembly.
    Wang S; Zhang X; Wu X; Lu C
    Soft Matter; 2016 Jan; 12(3):845-52. PubMed ID: 26542376
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon Nanotube Nanocomposites with Highly Enhanced Strength and Conductivity for Flexible Electric Circuits.
    Hwang JY; Kim HS; Kim JH; Shin US; Lee SH
    Langmuir; 2015 Jul; 31(28):7844-51. PubMed ID: 26107468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Viable synthesis of highly compressible, ultra-light graphene-carbon nanotube composite aerogels without additional reductant and their applications for strain-sensitivity.
    Gao L; Wang F; Zhan W; Wang Y; Sui G; Yang X
    Chem Commun (Camb); 2017 Jan; 53(3):521-524. PubMed ID: 27917430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of functionalization on thermal properties of single-wall and multi-wall carbon nanotube-polymer nanocomposites.
    Gulotty R; Castellino M; Jagdale P; Tagliaferro A; Balandin AA
    ACS Nano; 2013 Jun; 7(6):5114-21. PubMed ID: 23672711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conductive macroporous composite chitosan-carbon nanotube scaffolds.
    Lau C; Cooney MJ; Atanassov P
    Langmuir; 2008 Jun; 24(13):7004-10. PubMed ID: 18517231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioinspired, Highly Stretchable, and Conductive Dry Adhesives Based on 1D-2D Hybrid Carbon Nanocomposites for All-in-One ECG Electrodes.
    Kim T; Park J; Sohn J; Cho D; Jeon S
    ACS Nano; 2016 Apr; 10(4):4770-8. PubMed ID: 26986477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly conducting, strong nanocomposites based on nanocellulose-assisted aqueous dispersions of single-wall carbon nanotubes.
    Hamedi MM; Hajian A; Fall AB; Håkansson K; Salajkova M; Lundell F; Wågberg L; Berglund LA
    ACS Nano; 2014 Mar; 8(3):2467-76. PubMed ID: 24512093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultra-stretchable and skin-mountable strain sensors using carbon nanotubes-Ecoflex nanocomposites.
    Amjadi M; Yoon YJ; Park I
    Nanotechnology; 2015 Sep; 26(37):375501. PubMed ID: 26303117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlling electrical percolation in multicomponent carbon nanotube dispersions.
    Kyrylyuk AV; Hermant MC; Schilling T; Klumperman B; Koning CE; van der Schoot P
    Nat Nanotechnol; 2011 Apr; 6(6):364-9. PubMed ID: 21478868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon-nanotube-polymer nanocomposites for field-emission cathodes.
    Connolly T; Smith RC; Hernandez Y; Gun'ko Y; Coleman JN; Carey JD
    Small; 2009 Apr; 5(7):826-31. PubMed ID: 19199333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Switchable and Compressible Carbon Nanotube Sponge Electrocapillary Imbiber.
    Xue Y; Yang Y; Sun H; Li X; Wu S; Cao A; Duan H
    Adv Mater; 2015 Nov; 27(44):7241-6. PubMed ID: 26462159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functionalized carbon-nanotube sheet/bismaleimide nanocomposites: mechanical and electrical performance beyond carbon-fiber composites.
    Cheng Q; Wang B; Zhang C; Liang Z
    Small; 2010 Mar; 6(6):763-7. PubMed ID: 20183814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transparent, conductive, and printable composites consisting of TEMPO-oxidized nanocellulose and carbon nanotube.
    Koga H; Saito T; Kitaoka T; Nogi M; Suganuma K; Isogai A
    Biomacromolecules; 2013 Apr; 14(4):1160-5. PubMed ID: 23428212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly doped carbon nanotubes with gold nanoparticles and their influence on electrical conductivity and thermopower of nanocomposites.
    Choi K; Yu C
    PLoS One; 2012; 7(9):e44977. PubMed ID: 23024778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The electronic role of DNA-functionalized carbon nanotubes: efficacy for in situ polymerization of conducting polymer nanocomposites.
    Ma Y; Chiu PL; Serrano A; Ali SR; Chen AM; He H
    J Am Chem Soc; 2008 Jun; 130(25):7921-8. PubMed ID: 18517209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Free-standing nanocomposites with high conductivity and extensibility.
    Chun KY; Kim SH; Shin MK; Kim YT; Spinks GM; Aliev AE; Baughman RH; Kim SJ
    Nanotechnology; 2013 Apr; 24(16):165401. PubMed ID: 23535262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High volume fraction carbon nanotube-epoxy composites.
    Spitalsky Z; Tsoukleri G; Tasis D; Krontiras C; Georga SN; Galiotis C
    Nanotechnology; 2009 Oct; 20(40):405702. PubMed ID: 19738313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Soft-Templated Synthesis of Lightweight, Elastic, and Conductive Nanotube Aerogels.
    Liang W; Rhodes S; Zheng J; Wang X; Fang J
    ACS Appl Mater Interfaces; 2018 Oct; 10(43):37426-37433. PubMed ID: 30289683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.