These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

371 related articles for article (PubMed ID: 20361781)

  • 1. Size-dependent nanoscale kirkendall effect during the oxidation of nickel nanoparticles.
    Railsback JG; Johnston-Peck AC; Wang J; Tracy JB
    ACS Nano; 2010 Apr; 4(4):1913-20. PubMed ID: 20361781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and structural and magnetic characterization of Ni(core)/NiO(shell) nanoparticles.
    Johnston-Peck AC; Wang J; Tracy JB
    ACS Nano; 2009 May; 3(5):1077-84. PubMed ID: 19361203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetic properties of monodispersed Ni/NiO core-shell nanoparticles.
    Seto T; Akinaga H; Takano F; Koga K; Orii T; Hirasawa M
    J Phys Chem B; 2005 Jul; 109(28):13403-5. PubMed ID: 16852675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anisotropic growth of NiO nanorods from Ni nanoparticles by rapid thermal oxidation.
    Koga K; Hirasawa M
    Nanotechnology; 2013 Sep; 24(37):375602. PubMed ID: 23965575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and stability of nickel/nickel oxide core-shell nanoparticles.
    D'Addato S; Grillo V; Altieri S; Tondi R; Valeri S; Frabboni S
    J Phys Condens Matter; 2011 May; 23(17):175003. PubMed ID: 21493971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ environmental transmission electron microscopy to determine transformation pathways in supported Ni nanoparticles.
    Chenna S; Crozier PA
    Micron; 2012 Nov; 43(11):1188-94. PubMed ID: 22721962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunability of exchange bias in Ni@NiO core-shell nanoparticles obtained by sequential layer deposition.
    Spadaro MC; D'Addato S; Luches P; Valeri S; Grillo V; Rotunno E; Roldan MA; Pennycook SJ; Ferretti AM; Capetti E; Ponti A
    Nanotechnology; 2015 Oct; 26(40):405704. PubMed ID: 26376605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Size and surface effects on the magnetic properties of NiO nanoparticles.
    Proenca MP; Sousa CT; Pereira AM; Tavares PB; Ventura J; Vazquez M; Araujo JP
    Phys Chem Chem Phys; 2011 May; 13(20):9561-7. PubMed ID: 21499610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preferential CO oxidation in hydrogen: reactivity of core-shell nanoparticles.
    Nilekar AU; Alayoglu S; Eichhorn B; Mavrikakis M
    J Am Chem Soc; 2010 Jun; 132(21):7418-28. PubMed ID: 20459102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of highly sensitive and selective Au@NiO yolk-shell nanoreactors for gas sensor applications.
    Rai P; Yoon JW; Jeong HM; Hwang SJ; Kwak CH; Lee JH
    Nanoscale; 2014 Jul; 6(14):8292-9. PubMed ID: 24933405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of hollow Ni2p nanoparticles based on the nanoscale Kirkendall effect.
    Chiang RK; Chiang RT
    Inorg Chem; 2007 Jan; 46(2):369-71. PubMed ID: 17279811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative effectiveness of NiCl2, Ni- and NiO-NPs in controlling oral bacterial growth and biofilm formation on oral surfaces.
    Khan ST; Ahamed M; Alhadlaq HA; Musarrat J; Al-Khedhairy A
    Arch Oral Biol; 2013 Dec; 58(12):1804-11. PubMed ID: 24200307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of NiO Nanofibers Composed of Hollow Nanospheres with Controlled Sizes by the Nanoscale Kirkendall Diffusion Process and Their Electrochemical Properties.
    Cho JS; Lee SY; Ju HS; Kang YC
    ACS Appl Mater Interfaces; 2015 Nov; 7(46):25641-7. PubMed ID: 26548478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interface-mediated Kirkendall effect and nanoscale void migration in bimetallic nanoparticles during interdiffusion.
    Chee SW; Wong ZM; Baraissov Z; Tan SF; Tan TL; Mirsaidov U
    Nat Commun; 2019 Jun; 10(1):2831. PubMed ID: 31249286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and modeling of hollow intermetallic Ni-Zn nanoparticles formed by the Kirkendall effect.
    Jana S; Chang JW; Rioux RM
    Nano Lett; 2013 Aug; 13(8):3618-25. PubMed ID: 23829182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tailored core-shell-shell nanostructures: sandwiching gold nanoparticles between silica cores and tunable silica shells.
    Shi YL; Asefa T
    Langmuir; 2007 Aug; 23(18):9455-62. PubMed ID: 17661498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of hollow spheres and thin films of nickel hydroxide and nickel oxide with hierarchical structures.
    Wang D; Song C; Hu Z; Fu X
    J Phys Chem B; 2005 Jan; 109(3):1125-9. PubMed ID: 16851070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biotoxicity of nickel oxide nanoparticles and bio-remediation by microalgae Chlorella vulgaris.
    Gong N; Shao K; Feng W; Lin Z; Liang C; Sun Y
    Chemosphere; 2011 Apr; 83(4):510-6. PubMed ID: 21216429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interplay between microstructure and magnetism in NiO nanoparticles: breakdown of the antiferromagnetic order.
    Rinaldi-Montes N; Gorria P; Martínez-Blanco D; Fuertes AB; Fernández Barquín L; Rodríguez Fernández J; de Pedro I; Fdez-Gubieda ML; Alonso J; Olivi L; Aquilanti G; Blanco JA
    Nanoscale; 2014 Jan; 6(1):457-65. PubMed ID: 24217131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using reversed-phase liquid chromatography to monitor the sizes of Au/Pt core/shell nanoparticles.
    Liu FK; Chang YC
    J Chromatogr A; 2010 Mar; 1217(10):1647-53. PubMed ID: 20116795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.