These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 20361813)

  • 1. Travelling wave solutions for higher-order wave equations of kdv type (iii).
    Li J; Rui W; Long Y; He B
    Math Biosci Eng; 2006 Jan; 3(1):125-35. PubMed ID: 20361813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exact traveling wave solutions of modified KdV-Zakharov-Kuznetsov equation and viscous Burgers equation.
    Islam MH; Khan K; Akbar MA; Salam MA
    Springerplus; 2014; 3():105. PubMed ID: 24616841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exact Travelling-Wave Solutions of the Extended Fifth-Order Korteweg-de Vries Equation via Simple Equations Method (SEsM): The Case of Two Simple Equations.
    Nikolova EV
    Entropy (Basel); 2022 Sep; 24(9):. PubMed ID: 36141174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring optical solitary wave solutions in the (2+1)-dimensional equation with in-depth of dynamical assessment.
    Ashaq H; Majid SZ; Riaz MB; Asjad MI; Muhammad T
    Heliyon; 2024 Jun; 10(12):e32826. PubMed ID: 39022012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Negative-order Korteweg-de Vries equations.
    Qiao Z; Fan E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 2):016601. PubMed ID: 23005555
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A family of wave equations with some remarkable properties.
    da Silva PL; Freire IL; Sampaio JCS
    Proc Math Phys Eng Sci; 2018 Feb; 474(2210):20170763. PubMed ID: 29507519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exact periodic cross-kink wave solutions for the new (2+1)-dimensional KdV equation in fluid flows and plasma physics.
    Liu JG; Du JQ; Zeng ZF; Ai GP
    Chaos; 2016 Oct; 26(10):103114. PubMed ID: 27802674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The New Simulation of Quasiperiodic Wave, Periodic Wave, and Soliton Solutions of the KdV-mKdV Equation via a Deep Learning Method.
    Zhang Y; Dong H; Sun J; Wang Z; Fang Y; Kong Y
    Comput Intell Neurosci; 2021; 2021():8548482. PubMed ID: 34868298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Traveling waves in nonlinear media with dispersion, dissipation, and reaction.
    Koçak H
    Chaos; 2020 Sep; 30(9):093143. PubMed ID: 33003942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical calculation of
    Zhang Y; Hu X; Sun J
    Proc Math Phys Eng Sci; 2021 Jan; 477(2245):20200752. PubMed ID: 33642931
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Travelling breathers and solitary waves in strongly nonlinear lattices.
    James G
    Philos Trans A Math Phys Eng Sci; 2018 Aug; 376(2127):. PubMed ID: 30037936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamical behaviour of travelling wave solutions to the conformable time-fractional modified Liouville and mRLW equations in water wave mechanics.
    Mamun AA; Ananna SN; An T; Shahen NHM; Asaduzzaman M; Foyjonnesa
    Heliyon; 2021 Aug; 7(8):e07704. PubMed ID: 34401585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Traveling wave solutions of a coupled Schrödinger-Korteweg-de Vries equation by the generalized coupled trial equation method.
    Shang J; Li W; Li D
    Heliyon; 2023 May; 9(5):e15695. PubMed ID: 37153403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of Solitary wave solutions for Vakhnenko-Parkes equation via exp-function and Exp(-ϕ(ξ))-expansion method.
    Roshid HO; Kabir MR; Bhowmik RC; Datta BK
    Springerplus; 2014; 3():692. PubMed ID: 26034687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An energy-based stability criterion for solitary travelling waves in Hamiltonian lattices.
    Xu H; Cuevas-Maraver J; Kevrekidis PG; Vainchtein A
    Philos Trans A Math Phys Eng Sci; 2018 Apr; 376(2117):. PubMed ID: 29507176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exact and explicit traveling wave solutions to two nonlinear evolution equations which describe incompressible viscoelastic Kelvin-Voigt fluid.
    Roshid MM; Roshid HO
    Heliyon; 2018 Aug; 4(8):e00756. PubMed ID: 30186980
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Liu ZG; Liu M; Zhang J
    Sci Rep; 2024 Jul; 14(1):16315. PubMed ID: 39009661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On soliton solutions, periodic wave solutions and asymptotic analysis to the nonlinear evolution equations in (2+1) and (3+1) dimensions.
    Guo B; Fang Y; Dong H
    Heliyon; 2023 May; 9(5):e15929. PubMed ID: 37215890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lump, multi-lump, cross kinky-lump and manifold periodic-soliton solutions for the (2+1)-D Calogero-Bogoyavlenskii-Schiff equation.
    Roshid HO; Khan MH; Wazwaz AM
    Heliyon; 2020 Apr; 6(4):e03701. PubMed ID: 32322710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Explicit and exact travelling wave solutions for Hirota equation and computerized mechanization.
    Li B; Wang F; Nadeem S
    PLoS One; 2024; 19(5):e0303982. PubMed ID: 38771741
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.