BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 20361933)

  • 1. Five mutations in N-terminus confer thermostability on mesophilic xylanase.
    Zhang S; Zhang K; Chen X; Chu X; Sun F; Dong Z
    Biochem Biophys Res Commun; 2010 Apr; 395(2):200-6. PubMed ID: 20361933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improvement of the thermostability and catalytic activity of a mesophilic family 11 xylanase by N-terminus replacement.
    Sun JY; Liu MQ; Xu YL; Xu ZR; Pan L; Gao H
    Protein Expr Purif; 2005 Jul; 42(1):122-30. PubMed ID: 15939297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Seven N-terminal residues of a thermophilic xylanase are sufficient to confer hyperthermostability on its mesophilic counterpart.
    Zhang S; He Y; Yu H; Dong Z
    PLoS One; 2014; 9(1):e87632. PubMed ID: 24498158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Hydrophobic interaction between beta-sheet B1 and B2 in xylanase XYNB influencing the enzyme thermostability].
    Yang HM; Yao B; Luo HY; Zhang WZ; Wang YR; Yuan TZ; Bai YG; Wu NF; Fan YL
    Sheng Wu Gong Cheng Xue Bao; 2005 May; 21(3):414-9. PubMed ID: 16108366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Improvement of the thermostability of xylanase by N-terminus replacement].
    Yang HM; Meng K; Luo HY; Wang YR; Yuan TZ; Bai YG; Yao B; Fan YL
    Sheng Wu Gong Cheng Xue Bao; 2006 Jan; 22(1):26-32. PubMed ID: 16572836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of the thermostability and hydrolytic activity of xylanase by random gene shuffling.
    Shibuya H; Kaneko S; Hayashi K
    Biochem J; 2000 Jul; 349(Pt 2):651-6. PubMed ID: 10880366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced thermostability of a mesophilic xylanase by N-terminal replacement designed by molecular dynamics simulation.
    Yin X; Li JF; Wang JQ; Tang CD; Wu MC
    J Sci Food Agric; 2013 Sep; 93(12):3016-23. PubMed ID: 23512640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improvement of thermostability of fungal xylanase by using site-directed mutagenesis.
    Sriprang R; Asano K; Gobsuk J; Tanapongpipat S; Champreda V; Eurwilaichitr L
    J Biotechnol; 2006 Dec; 126(4):454-62. PubMed ID: 16757052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering the thermostability of a xylanase from Aspergillus oryzae by an enhancement of the interactions between the N-terminus extension and the β-sheet A2 of the enzyme.
    Chen Z; Zhang H; Wang J; Tang C; Wu J; Wu M
    Biotechnol Lett; 2013 Dec; 35(12):2073-9. PubMed ID: 23907668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermostabilization of extremophilic Dictyoglomus thermophilum GH11 xylanase by an N-terminal disulfide bridge and the effect of ionic liquid [emim]OAc on the enzymatic performance.
    Li H; Kankaanpää A; Xiong H; Hummel M; Sixta H; Ojamo H; Turunen O
    Enzyme Microb Technol; 2013 Dec; 53(6-7):414-9. PubMed ID: 24315645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effect of N-terminal disulfide bridge on thermostability of family 11 xylanases].
    Gao S; Wang J; Wu M; Tang C; Wu J
    Sheng Wu Gong Cheng Xue Bao; 2012 Dec; 28(12):1441-9. PubMed ID: 23593868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single mutations of residues outside the active center of the xylanase Xys1 Delta from Streptomyces halstedii JM8 affect its activity.
    Díaz M; Rodriguez S; Fernández-Abalos JM; De Las Rivas J; Ruiz-Arribas A; Shnyrov VL; Santamaría RI
    FEMS Microbiol Lett; 2004 Nov; 240(2):237-43. PubMed ID: 15522513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An additional aromatic interaction improves the thermostability and thermophilicity of a mesophilic family 11 xylanase: structural basis and molecular study.
    Georis J; de Lemos Esteves F; Lamotte-Brasseur J; Bougnet V; Devreese B; Giannotta F; Granier B; Frère JM
    Protein Sci; 2000 Mar; 9(3):466-75. PubMed ID: 10752608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutagenesis of N-terminal residues confer thermostability on a Penicillium janthinellum MA21601 xylanase.
    Xiong K; Hou J; Jiang Y; Li X; Teng C; Li Q; Fan G; Yang R; Zhang C
    BMC Biotechnol; 2019 Jul; 19(1):51. PubMed ID: 31345213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics studies on the thermostability of family 11 xylanases.
    Purmonen M; Valjakka J; Takkinen K; Laitinen T; Rouvinen J
    Protein Eng Des Sel; 2007 Nov; 20(11):551-9. PubMed ID: 17977846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High resolution structure and sequence of T. aurantiacus xylanase I: implications for the evolution of thermostability in family 10 xylanases and enzymes with (beta)alpha-barrel architecture.
    Lo Leggio L; Kalogiannis S; Bhat MK; Pickersgill RW
    Proteins; 1999 Aug; 36(3):295-306. PubMed ID: 10409823
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermostabilization of Bacillus circulans xylanase: computational optimization of unstable residues based on thermal fluctuation analysis.
    Joo JC; Pack SP; Kim YH; Yoo YJ
    J Biotechnol; 2011 Jan; 151(1):56-65. PubMed ID: 20959126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of the activity and alkaline pH stability of Thermobifida fusca xylanase A by directed evolution.
    Wang Q; Xia T
    Biotechnol Lett; 2008 May; 30(5):937-44. PubMed ID: 18292971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cloning, expression, and characterization of protease-resistant xylanase from Streptomyces fradiae var. k11.
    Li N; Yang P; Wang Y; Luo H; Meng K; Wu N; Fan Y; Yao B
    J Microbiol Biotechnol; 2008 Mar; 18(3):410-6. PubMed ID: 18388456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of amino acid changes in the signal peptide on the secretion of the Tat-dependent xylanase C from Streptomyces lividans.
    Li H; Faury D; Morosoli R
    FEMS Microbiol Lett; 2006 Feb; 255(2):268-74. PubMed ID: 16448505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.