BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 20361944)

  • 1. Methods for investigation of targeted kinase inhibitor therapy using chemical proteomics and phosphorylation profiling.
    Fang B; Haura EB; Smalley KS; Eschrich SA; Koomen JM
    Biochem Pharmacol; 2010 Sep; 80(5):739-47. PubMed ID: 20361944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting ERK1/2 protein-serine/threonine kinases in human cancers.
    Roskoski R
    Pharmacol Res; 2019 Apr; 142():151-168. PubMed ID: 30794926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emerging applications for phospho-proteomics in cancer molecular therapeutics.
    Moran MF; Tong J; Taylor P; Ewing RM
    Biochim Biophys Acta; 2006 Dec; 1766(2):230-41. PubMed ID: 16889898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphoproteomics Profiling to Identify Altered Signaling Pathways and Kinase-Targeted Cancer Therapies.
    Deb B; George IA; Sharma J; Kumar P
    Methods Mol Biol; 2020; 2051():241-264. PubMed ID: 31552632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphoproteomics and cancer research.
    Ashman K; Villar EL
    Clin Transl Oncol; 2009 Jun; 11(6):356-62. PubMed ID: 19531450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteomic screening for Rho-kinase substrates by combining kinase and phosphatase inhibitors with 14-3-3ζ affinity chromatography.
    Nishioka T; Nakayama M; Amano M; Kaibuchi K
    Cell Struct Funct; 2012; 37(1):39-48. PubMed ID: 22251793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrating phosphoproteomics into kinase-targeted cancer therapies in precision medicine.
    Wu X; Xing X; Dowlut D; Zeng Y; Liu J; Liu X
    J Proteomics; 2019 Jan; 191():68-79. PubMed ID: 29621648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mass spectrometry-based proteomics: from cancer biology to protein biomarkers, drug targets, and clinical applications.
    Jimenez CR; Verheul HM
    Am Soc Clin Oncol Educ Book; 2014; ():e504-10. PubMed ID: 24857147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissecting kinase signaling pathways.
    Boyle SN; Koleske AJ
    Drug Discov Today; 2007 Sep; 12(17-18):717-24. PubMed ID: 17826684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tracing cancer networks with phosphoproteomics.
    Solit DB; Mellinghoff IK
    Nat Biotechnol; 2010 Oct; 28(10):1028-9. PubMed ID: 20944590
    [No Abstract]   [Full Text] [Related]  

  • 11. Large-scale proteomics analysis of the human kinome.
    Oppermann FS; Gnad F; Olsen JV; Hornberger R; Greff Z; Kéri G; Mann M; Daub H
    Mol Cell Proteomics; 2009 Jul; 8(7):1751-64. PubMed ID: 19369195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. My journey from tyrosine phosphorylation inhibitors to targeted immune therapy as strategies to combat cancer.
    Levitzki A; Klein S
    Proc Natl Acad Sci U S A; 2019 Jun; 116(24):11579-11586. PubMed ID: 31076554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the novel broad-spectrum kinase inhibitor CTx-0294885 as an affinity reagent for mass spectrometry-based kinome profiling.
    Zhang L; Holmes IP; Hochgräfe F; Walker SR; Ali NA; Humphrey ES; Wu J; de Silva M; Kersten WJ; Connor T; Falk H; Allan L; Street IP; Bentley JD; Pilling PA; Monahan BJ; Peat TS; Daly RJ
    J Proteome Res; 2013 Jul; 12(7):3104-16. PubMed ID: 23692254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical proteomics and functional proteomics strategies for protein kinase inhibitor validation and protein kinase substrate identification: applications to protein kinase CK2.
    Gyenis L; Turowec JP; Bretner M; Litchfield DW
    Biochim Biophys Acta; 2013 Jul; 1834(7):1352-8. PubMed ID: 23416530
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of cancer drug resistance mechanisms by phosphoproteomics.
    Boulos JC; Yousof Idres MR; Efferth T
    Pharmacol Res; 2020 Oct; 160():105091. PubMed ID: 32712320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterisation of kinase-selective inhibitors by chemical proteomics.
    Daub H
    Biochim Biophys Acta; 2005 Dec; 1754(1-2):183-90. PubMed ID: 16198161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteomic analysis of rat liver phosphoproteins after treatment with protein kinase inhibitor H89 (N-(2-[p-bromocinnamylamino-]ethyl)-5-isoquinolinesulfonamide).
    Davis MA; Hinerfeld D; Joseph S; Hui YH; Huang NH; Leszyk J; Rutherford-Bethard J; Tam SW
    J Pharmacol Exp Ther; 2006 Aug; 318(2):589-95. PubMed ID: 16687476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A recent update on small-molecule kinase inhibitors for targeted cancer therapy and their therapeutic insights from mass spectrometry-based proteomic analysis.
    Lee PY; Yeoh Y; Low TY
    FEBS J; 2023 Jun; 290(11):2845-2864. PubMed ID: 35313089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Quantitation of cellular phosphorylation dynamics by phosphoproteomics approaches].
    Ishihama Y; Imami K
    Yakugaku Zasshi; 2014; 134(4):521-7. PubMed ID: 24694813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robust enrichment of phosphorylated species in complex mixtures by sequential protein and peptide metal-affinity chromatography and analysis by tandem mass spectrometry.
    Collins MO; Yu L; Husi H; Blackstock WP; Choudhary JS; Grant SG
    Sci STKE; 2005 Aug; 2005(298):pl6. PubMed ID: 16118397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.